Skip to main content
Log in

Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Stationary and nonstationary state45Ca fluxes as well as Sr−Ca exchange movements were studied in energy-depleted human erythrocyte ghosts at different intra-and extracellular Ca concentrations. Influx and efflux followed the kinetics of a closed two-compartment system. The influx and efflux rate constants (k in andk out, respectively, fractions of total extra- or intracellular45Ca that move in one direction per unit time) were similar in magnitude. They decreased with increasing Ca concentration on the cisside and increased with increasing Ca concentration on the trans-side of the membrane. Hence, the fluxes in both directions were characterized by saturation kinetics and appeared to be partially caused by an exchange diffusion mechanism. In the presence of a moderate inward (up to 8mm) or outward (up to 2mm) Ca concentration gradient, kin andk out did not vary in the course of an experiment and did not differ significantly from rates which were measured under stationary state conditions. Extracellular Sr induced an outward transport of intracellular Ca against the concentration gradient (counter-transport). The resulting inward Ca concentration gradient (maximal inside-to-outside concentration ratio as 1 to 3) persisted since extra- and intracellular Sr did not equilibrate. Analogous results were obtained studying45Ca−40Ca countertransport. In net flow experiments Ca−Sr exchange proved to occur on a one-for-one basis. Ca−Sr exchange was additive to the noncoupled Ca and Sr net downhill movements. The experimental results suggest that a specific ATP-independent Ca transfer system exists in the erythrocyte membrane which acts symmetrically on the two sides of the membrane and is restricted to a tightly coupled one-for-one exchange diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, R. A. 1969. The influence of calcium on sodium efflux in squid axons.J. Physiol. 200:431.

    PubMed  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., Steinhardt, R. A. 1969. The oubain-sensitive fluxes of sodium and potassium in squid giant axons.J. Physiol. 200:459.

    PubMed  Google Scholar 

  • Blaustein, M. P., Hodgkin, A. L. 1969. The effect of cyanide on the efflux of calcium from squid axons.J. Physiol. 200:497.

    PubMed  Google Scholar 

  • Breemen, C. van, Breemen, D. van. 1968. Stimulation of45Ca efflux from smooth muscle by extracellular Ca2+.Biochim. Biophys. Acta 163:114.

    PubMed  Google Scholar 

  • Breemen, D. van, Breemen, C. van. 1969. Calcium exchange diffusion in a porous phospholipid ion-exchange membrane.Nature 223:898.

    PubMed  Google Scholar 

  • Breemen, C. van, Daniel, E. E., Breemen, D. van. 1966. Ca distribution and exchange in the rat uterus.J. Gen. Physiol. 49:1265.

    PubMed  Google Scholar 

  • Ekman, A., Manninen, V., Salminen, S. 1969. Ion movements in red cells treated with propranolol.Acta Physiol. Scand. 75:333.

    PubMed  Google Scholar 

  • Feinstein, M. B. 1966. Inhibition of contraction and calcium exchangeability in rat uterus by local anesthetics.J. Pharmacol. 152:516.

    Google Scholar 

  • Garrahan, P. J., Glynn, I. M. 1967a. The behaviour of the sodium pump in red cells in the absence of external potassium.J. Physiol. 192:159.

    PubMed  Google Scholar 

  • Garrahan, P. J., Glynn, I. M. 1967b. Factors affecting the relative magnitudes of the sodium:potassium and sodium:sodium exchange catalyzed by the sodium pump.J. Physiol. 192:189.

    PubMed  Google Scholar 

  • Gent, W. L. G., Trounce, J. R., Walser, M. 1964. The binding of calcium ion by the human erythrocyte membrane.Arch. Biochim. Biophys. 105:582.

    Google Scholar 

  • Glitsch, H. G. 1969. Über die Wirkung von Sr-Ionen auf den Ca2+-Austausch am Meerschweinchenvorhof.Experientia 25:612.

    PubMed  Google Scholar 

  • Glitsch, H. G., Reuter, H., Scholz, H. 1970. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles.J. Physiol. 209:25.

    PubMed  Google Scholar 

  • Glynn, I. M., Hoffman, J. F., Lew, V. L. 1971. Some “partial reactions” of the sodium pump.Phil. Trans. 262:91.

    Google Scholar 

  • Kalix, P. 1971. Uptake and release of calcium in rabbit vagus nerve.Pflüg. Arch. Ges. Physiol. 326:1.

    Google Scholar 

  • Krejci, I., Daniel, E. E. 1970. Effect of altered external calcium concentration on fluxes of calcium 45 in rat myometrium.Amer. J. Physiol. 219:263.

    PubMed  Google Scholar 

  • Lamb, J. F., Lindsay, K. 1971. Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells.J. Physiol. 218:691.

    PubMed  Google Scholar 

  • Lee, K. S., Shin, B. C. 1969. Studies on the active transport of calcium in human red cells.J. Gen. Physiol. 54:713.

    PubMed  Google Scholar 

  • Manninen, V. 1970. Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle.Acta Physiol. Scand. (Suppl.)355:1.

    PubMed  Google Scholar 

  • Olson, E. J., Cazort, R. J. 1969. Active calcium and strontium transport in human erythrocyte ghosts.J. Gen. Physiol. 53:311.

    PubMed  Google Scholar 

  • Porzig, H. 1970. Calcium efflux from human erythrocyte ghosts.J. Membrane Biol. 2:324.

    Google Scholar 

  • Porzig, H. 1972. ATP-independent calcium net movements in human red cell ghosts.J. Membrane Biol. 8:237.

    Google Scholar 

  • Reuter, H., Blaustein, M. P., Häusler, G. 1972. Na−Ca exchange and tension development in arterial smooth muscle.Phil. Trans. (In press).

  • Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. 195:451.

    PubMed  Google Scholar 

  • Riggs, D. S., 1963. The Mathematical Approach to Physiological Problems. p. 277. The William & Wilkins Company, Baltimore, Maryland.

    Google Scholar 

  • Rossum, G. D. V. van. 1970. Net movements of calcium and magnesium in slices of rat liver.J. Gen. Physiol. 55:18.

    PubMed  Google Scholar 

  • Schatzmann, H. J., Vincenzi, F. F. 1969. Calcium movements across the membrane of human red cells.J. Physiol. 201:369.

    PubMed  Google Scholar 

  • Shanes, A. M., Bianchi, C. P. 1959. The distribution and kinetics of release of radiocalcium in tendon and skeletal muscle.J. Gen. Physiol. 42:1123.

    PubMed  Google Scholar 

  • Stein, W. D. 1967. The Movements of Molecules across Cell Membranes. p. 156. Academic Press Inc., New York, London.

    Google Scholar 

  • Ussing, H. H. 1947. Interpretation of the exchange of radiosodium in isolated muscle.Nature 160:262.

    Google Scholar 

  • Ussing, H. H. 1960. The alkali metal ions in isolated systems and tissues.In: Handbuch der Experimentellen Pharmakologie. Vol. 13, p. 50. Springer-Verlag, Berlin.

    Google Scholar 

  • Weber, A. 1971. Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.J. Gen. Physiol. 57:50.

    PubMed  Google Scholar 

  • Weber, A., Herz, R., Reiss, I. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum.Biochem. Z. 345:329.

    Google Scholar 

  • Weed, R. I., LaCelle, P. L., Merrill, E. W. 1969. Metabolic dependence of red cell deformability.J. Clin. Invest. 48:795.

    PubMed  Google Scholar 

  • Wilbrandt, W., Rosenberg, T. 1961. The concept of carrier transport and its corollaries in pharmacology.Pharmacol. Rev. 13:109.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porzig, H. Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts. J. Membrain Biol. 11, 21–46 (1973). https://doi.org/10.1007/BF01869811

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869811

Keywords

Navigation