Skip to main content
Log in

The M-antigen in HK and LK sheep red cell membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Red cells of all high-potassium-type (HK) sheep and of more than one half of all low-potassium-type (LK) sheep contained the M-antigen and were hemolyzed by iso-immune anti-M antiserum in presence of a guinea pig serum complement. It was characteristic for the hemolysis of HK red cells by the M-antiserum the all HK cells were ultimately hemolyzed at suboptimal antibody concentrations, provided the time of incubation at 37 °C was sufficiently long. Thus, the M-antigen appears to be expressed on all red cells of an individual HK sheep. The M-antibody was absorbed by HK red cells and their membranes with a high affinity, whereas M-negative LK red cells and their membranes did not bind the antibody. The ratio of the number of antibody units absorbed per cell or membrane to the number of antibody units required for lysis approached unity. The amount of antibody absorbed per membrane was unaffected by ouabain in the presence of ATP, Mg++, Na+, and K+. The M-antigen activity depends on the integrity of the red cell membrane and was not detectable after lyophilization of HK membranes or in the membrane protein solubilized by n-butanol. The major M-antibody activity was found among the high molecular weight plasma proteins and may be attributed to the β2 M globulins. Heterogeneity within the antibody fraction cannot be excluded since some hemolytic activity was detected in a chromatographic fraction containing predominantly γ-globulin. The relationship between the M-antigen and the Na+−K+ transport system in sheep red cell membranes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azen, E. A., R. A. Nazhat, and O. Smithies. 1966. Acidic buffer systems for urea-starch gel electrophoresis.J. Lab. Clin. Med. 67:650.

    Google Scholar 

  • Brewer, G. J., J. W. Eaton, C. C. Beck, L. Feitler, and D. C. Shreffler. 1968. Sodiumpotassium stimulated ATPase activity of mammalian hemolysates: Clinical observations and dominance of ATPase deficiency in the potassium polymorphism of sheep.J. Lab. Clin. Med. 71:744.

    PubMed  Google Scholar 

  • Chordi, A., and I. G. Kagan. 1964. Analysis of normal sheep serum by immunoelectrophoresis.J. Immunol. 93:439.

    PubMed  Google Scholar 

  • Evans, J. V., and A. T. Phillipson. 1957. Electrolyte concentration in the erythrocytes of the goat and ox.J. Physiol. 139:87.

    Google Scholar 

  • Glynn, I. M. 1957. The action of cardiac glycosides on sodium and potassium movements in human red cells.J. Physiol. 136:148.

    PubMed  Google Scholar 

  • Lauf, P. K. 1969. Binding of iso-immune anti-M by HK and LK sheep red cell membranes.Fed. Proc. 28:315.

    Google Scholar 

  • —, and M. D. Poulik. 1968. Solubilization and structural integrity of the human red cell membrane.Brit. J. Hematol. 15:191.

    Google Scholar 

  • Maddy, A. H. 1964. The solubilization of the protein of the ox erythrocyte ghost.Biochim. Biophys. Acta 88:448.

    PubMed  Google Scholar 

  • Maddy, A. H. 1968. Some problems relating to the chemical composition of membranes.In Symposium on the Molecular Basis of Membrane Function. Symposia of the Society of General Physiologists.In press.

  • Mayer, M. M. 1961.In Experimental Immunochemistry. E. A. Kabat, editor. p. 154. Chas. C., Thomas, Springfield, Ill.

    Google Scholar 

  • Nelson, G. J. 1967. Studies on the lipids of sheep red blood cells. I. Lipid composition in low and high potassium red cells.Lipids 2:64.

    Google Scholar 

  • Post, R. L., C. R. Merritt, C. R. Kinsolving, and C. D. Albright. 1960. Membrane adenosine triphosphatase as a participant in active transport of sodium and potassium in the human erythrocyte.J. Biol. Chem. 235:1791.

    Google Scholar 

  • Poulik, M. D., and P. K. Lauf. 1965. Heterogeneity of water-soluble structural components of human red cell membrane.Nature 208:874.

    PubMed  Google Scholar 

  • Rapp, H. J. 1953. Purification and immunochemical characterization of the heat stable alcohol-soluble hemolytic antibody inhibitor of the sheep erythrocytes. Ph. D. Thesis. The John Hopkins University, Baltimore, Md.

    Google Scholar 

  • Rasmusen, B. A., and J. G. Hall. 1966a. Association between potassium concentration and serological type of sheep red blood cells.Science 151:1551.

    PubMed  Google Scholar 

  • Rasmusen, B. A., and J. G. Hall. 1966b. An investigation into the association between potassium levels and blood types in sheep and goats.In X. Congres Europeen sur les groupes sanguins et le polymorphisme biochimique des animaux. p. 453. Paris.

  • —, C. Stormont, and Y. Suzuki. 1960. Blood groups in sheep. III. The A, C, D and M systems.Genetics 45:1595.

    Google Scholar 

  • Rosse, W. F., T. Borsos, and H. J. Rapp. 1968. Cold-reacting antibodies: The enhancement of antibody fixation by the first component of complement (C'la).J. Immunol. 100:259.

    PubMed  Google Scholar 

  • Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrozytenmembran.Helv. Physiol. Acta 11:346.

    Google Scholar 

  • Scheidegger, J. J. 1955. Une micro-methode de l'immunoelectrophorese.Intern. Arch. Allergy Appl. Immunol. 7:103.

    Google Scholar 

  • Silverstein, A. M., G. J. Thorbecke, K. L. Kraner, and R. J. Lukes. 1963. Fetal response to antigenic stimulus III. γ Globulin production in normal and stimulated fetal lambs.J. Immunol. 91:384.

    PubMed  Google Scholar 

  • Tosteson, D. C. 1963. Active transport, genetics and cellular evolution.Fed. Proc. 22:19.

    PubMed  Google Scholar 

  • — 1966. Energy sources in ionic movements.In The Myocardial Cell. H. L. Conn and S. A. Briller, editors. p. 111. U. of Pa. Press, Philadelphia.

    Google Scholar 

  • — P. Cook, and R. Blount. 1965. Separation of adenosine triphosphatase of HK and LK sheep red cell membranes by density gradient centrifugation.J. Gen. Physiol. 48:1125.

    PubMed  Google Scholar 

  • —, and J. F. Hoffman. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. Gen. Physiol. 44:169.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauf, P.K., Tosteson, D.C. The M-antigen in HK and LK sheep red cell membranes. J. Membrain Biol. 1, 177–193 (1969). https://doi.org/10.1007/BF01869780

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869780

Keywords

Navigation