The Journal of Membrane Biology

, Volume 30, Issue 1, pp 381–401 | Cite as

Membrane structural and functional responses to vasopressin in toad bladder

  • William A. Kachadorian
  • James B. Wade
  • Carole C. Uiterwyk
  • Vincent A. DiScala


Freeze-fracture electronmicroscopy demonstrates that vasopressin stimulation of isolated toad bladder results in a striking morphologic alteration of epithelial membrane structure. This alteration is characterized by the aggregation of intramembranous particles in orderly linear arrays at multiple sites in the luminal membranes of granular cells specifically. The size of these aggregates varies considerably, in terms of area, over a range from 0.5 to 70×10−3 μm2. The median aggregate size is about 10.5×10−3 μm2. Since the extent of vasopressin-associated particle aggregation, in terms of frequency of sites per area of membrane or cumulative area of membrane occupied by them, closely correlates with induced changes in transport function, as measured by osmotic water flow, the aggregates themselves appear to be of physiologic significance in the mechanism of action of vasopressin. This hypothesis is supported by the observations that sites of aggregation occur (a) in response to serosal exposure to hormone specifically, (b) independently of an osmotic gradient, and (c) following stimulation with cyclic adenosine monophosphate.


Vasopressin Functional Response Aggregate Size Adenosine Monophosphate Granular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bentley, P.J. 1958. The effects of neurohypophysial extracts on water transfer across the wall of the isolated urinary bladder of the toadBufo marinus. J. Endocrinol.17:201Google Scholar
  2. 2.
    Bentley, P.J. 1959. The effects of ionic changes on water transfer across the isolated urinary bladder of the toadBufo marinus.J. Endocrinol. 18:327Google Scholar
  3. 3.
    Bentley, P.J. 1960. The effects of vasopressin on the short-circuit current across the wall of the isolated bladder of the toad,Bufo marinus.J. Endocrinol. 21:161Google Scholar
  4. 4.
    Branton, D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Mühlethaler, K., Northcote, D.H., Packer, L., Satir, B., Satir, P., Speth, V., Staehelin, L.A., Steere, R.L., Weinstein, R.S. 1975. Freeze-etching nomenclature.Science 190:54Google Scholar
  5. 5.
    Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129Google Scholar
  6. 6.
    Civan, M.M., DiBona, D.R. 1974. Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin.J. Membrane Biol. 19:195Google Scholar
  7. 7.
    Civan, M.M., Frazier, H.S. 1968. The site of the stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589Google Scholar
  8. 8.
    Davis, W.L., Goodman, D.B.P., Martin, J.H., Matthews, J.L., Rasmussen, H. 1974. Vasopressin-induced changes in the toad urinary bladder epithelial surface.J. Cell Biol. 61:544Google Scholar
  9. 9.
    DeLorenzo, R.J., Greengard, P. 1973. Activation by adenosine 3′∶5′-monophosphate of a membrane-bound phosphoprotein phosphatase from toad bladder.Proc. Nat. Acad. Sci. USA 70:1831Google Scholar
  10. 10.
    DeLorenzo, R.J., Walton, K.G., Curran, P.F., Greengard, P. 1973. Regulation of phosphorylation of a specific protein in toad-bladder membrane by antidiuretic hormone and cyclic AMP and its possible relationship to membrane permeability changes.Proc. Nat. Acad. Sci. USA 70:880Google Scholar
  11. 11.
    DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79Google Scholar
  12. 12.
    Eggena, P. 1973. Inhibition of vasopressin-stimulated urea transport across the toad bladder by thiourea.J. Clin. Invest. 52:2963Google Scholar
  13. 13.
    Ferguson, D.R., Twite, B.R. 1974. Effects of vasopressin on toad bladder membrane proteins: Relationship to transport of sodium and water.J. Endocrinol. 61:501Google Scholar
  14. 14.
    Frazier H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529Google Scholar
  15. 15.
    Handler, J.S., Butcher, R.W., Sutherland, W., Orloff J. 1965. The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad.J. Biol. Chem. 240:4524Google Scholar
  16. 16.
    Hays, R.M., Leaf, A. 1962. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:905Google Scholar
  17. 17.
    Kachadorian, W.A., Levine, S.D., Wade, J.B., Hays, R.M., DiScala, V.A. 1975. Relationship of aggregated intramembranous particles to water permeability in vasopressin (ADH)-treated toad bladder.Kidney Int. 8:481 (Abstr.)Google Scholar
  18. 18.
    Kachadorian, W.A., Wade, J.B., DiScala, V.A. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane.Science 190:67Google Scholar
  19. 19.
    Leaf, A. 1960. Some actions of neurophypophyseal hormones on a living membrane.J. Gen. Physiol. 43:175Google Scholar
  20. 20.
    Levine, S., Franki, N., Hays, R.M. 1973. A saturable, vasopressin-sensitive carrier for urea and acetamide in the toad bladder epithelial cell.J. Clin. Invest. 52:2083Google Scholar
  21. 21.
    Levine, S., Franki, N., Hays, R.M. 1973. Effect of phloretin on water and solute movement in the toad bladder.J. Clin. Invest. 52:1435Google Scholar
  22. 22.
    Macknight, A.D.C., Leaf, A., Civan, M.M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127Google Scholar
  23. 23.
    MacLennan, D.H., Seeman, P., Iles, G.H., Yip, C.C. 1971 Membrane formation by adenosine triphosphatase of sarcoplasmic reticulum.J. Biol. Chem. 246:2702Google Scholar
  24. 24.
    Maffly, R.H., Hays, R.M., Lamdin, E., Leaf, A. 1960. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea.J. Clin. Invest. 39:630Google Scholar
  25. 25.
    McIntyre, J.A., Gilula, N.B., Karnovsky, M.J. 1974. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes.J. Cell Biol. 60:192Google Scholar
  26. 26.
    Orloff, J., Handler, J.S. 1962. The similarity of effects of vasopressin, adenosine 3′,5′-phosphate (cyclic AMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702Google Scholar
  27. 27.
    Peterson, M.J., Edelman, I.S. 1964. Calcium inhibition of the action of vasopressin on the urinary bladder of the toad.J. Clin. Invest. 43:583Google Scholar
  28. 28.
    Pietras, R.J., Wright, E.M. 1975. The membrane action of antidiuretic hormone (ADH) on toad urinary bladder.J. Membrane Biol. 22:107Google Scholar
  29. 29.
    Pinto da Silva, P. 1972. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation.J. Cell Biol. 53:777Google Scholar
  30. 30.
    Pinto da Silva, P., Douglas, S.D., Branton, D. 1971. Localization of A antigen sites on human erythrocyte ghosts.Nature (London) 232:194Google Scholar
  31. 31.
    Shuchter, S.H., Franki, N., Hays, R.M. 1973. The effect of tanning agents on the permeability of the toad bladder to water and solutes.J. Membrane Biol. 14:177Google Scholar
  32. 32.
    Speth, V., Wunderlich, F. 1973. Membranes ofTetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature.Biochim. Biophys. Acta 291:621Google Scholar
  33. 33.
    Spinelli, F., Grosso, A., de Sousa, R.C. 1975. The hydrosmotic effect of vasopressin: A scanning electron-microscope study.J. Membrane Biol. 23:139Google Scholar
  34. 34.
    Taylor, A., Mamelak, M., Reaven, E., Maffly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347Google Scholar
  35. 35.
    Tillack, T.W., Scott, R.E., Marchesi, V.T. 1972. The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles.J. Exp. Med. 135:1209Google Scholar
  36. 36.
    Tourtellotte, M.E., Zupnik, J.S. 1973. Freeze-fracturedAcholeplasma laidlawii membranes: Nature of particles observed.Science 179:84Google Scholar
  37. 37.
    Wade, J.B., DiScala, V.A., Karnovsky, M.J. 1975. Membrane structural specialization of the toad bladder revealed by the freeze-fracture technique. I. The granular cell.J. Membrane Biol. 22:385Google Scholar
  38. 38.
    Walton, K.G., DeLorenzo, R.J., Curran, P.F., Greengard, P. 1975. Regulation of protein phosphorylation and sodium transport in toad bladder.J. Gen. Physiol. 65:153Google Scholar
  39. 39.
    Yuasa, S., Urakabe, S., Kimura, G., Shirai, D., Takamitsu, Y., Orita, Y., Abe, H. 1975. Effect of colchicine on the osmotic water flow across the toad urinary bladder.Biochim. Biophys. Acta 413:277Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • William A. Kachadorian
    • 1
  • James B. Wade
    • 1
  • Carole C. Uiterwyk
    • 1
  • Vincent A. DiScala
    • 1
  1. 1.Renal ServiceU.S. Public Health Service HospitalStaten Island

Personalised recommendations