Skip to main content
Log in

How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2′-chloro-4′ nitrosalicylanilide)

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A simple carrier model describes adequately the transport of protons across lipid bilayer membranes by the weak acid S-13. We determined the adsorption coefficients of the anionic, A, and neutral, HA, forms of the weak acid and the rate constants for the movement of A and HA across the membrane by equilibrium dialysis, electrophoretic mobility, membrane potential, membrane conductance, and spectrophotometric measurements. These measurements agree with the results of voltage clamp and charge pulse kinetic experiments. We considered three mechanisms by which protons can cross the membranesolution interface. An anion adsorbed to the interface can be protonated by (i) a H+ ion in the aqueous phase (protolysis), (ii) a buffer molecule in the aqueous phase or (iii) water molecules (hydrolysis). We demonstrated that the first reaction cannot provide the required flux of protons: the rate at which H+ must combine with the adsorbed anions is greater than the rate at which diffusion-limited reactions occur in the bulk aqueous phase. We also ruled out the possibility that the buffer is the main source of protons: the rate at which buffers must combine with the adsorbed anions is greater than the diffusion-limited rate when we reduced the concentration of polyanionic buffer adjacent to the membrane-solution interface by using membranes with a negative surface charge. A simple analysis demonstrates that a hydrolysis reaction can account for the kinetic data. Experiments at acid pH demonstrate that the transfer of H+ from the membrane to the aqueous phase is limited by the rate at which OH combines with adsorbed HA and that the diffusion coefficient of OH in the water adjacent to the bilayer has a value characteristic of bulk water. Our experimental results demonstrate that protons are capable of moving rapidly across the membrane-solution interface, which argues against some mechanisms of local chemiosmosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakker, E.P., Arents, J.P., Hoebe, J.P.M., Terada, H. 1975. Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria.Biochim. Biophys. Acta 387:491–506

    PubMed  Google Scholar 

  2. Bangham, A.D., Hill, M.W., Miller, N.G.A. 1974. Preparation and use of liposomes as models of biological membranes.Methods Membr. Biol. 1:1–68

    Google Scholar 

  3. Barenholz, Y., Gibbes, D., Littman, B.J., Goll, J., Thompson, T.E. 1977. A simple method for the preparation of homogeneous phospholipid vesicles.Biochemistry 16:2806–2810

    PubMed  Google Scholar 

  4. Bell, R.P. 1973. The Proton in Chemistry. Cornell University Press, Ithaca

    Google Scholar 

  5. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  6. Cohen, F.S., Eisenberg, M., McLaughlin, S. 1977. The kinetic mechanism of action of an uncoupler of oxidative phosphorylation.J. Membrane. Biol. 37:361–396

    Google Scholar 

  7. Delahay, P. 1954. New Instrumental Methods in Electrochemistry. pp. 87–95. Interscience. New York

    Google Scholar 

  8. Dijk, C. van, Levie, R. de 1985. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through lipid membranes.Biophys. J. 48:125–136

    PubMed  Google Scholar 

  9. Dilger, J., McLaughlin, S. 1979. Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles.J. Membrane Biol. 46:359–384

    Google Scholar 

  10. Dilger, J.P., Benz, R. 1985. Optical and electrical properties of thin monoolein lipid bilayers.J. Membrane Biol. 85:181–189

    Google Scholar 

  11. Eigen, M. 1964. Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis: part I. Elementary Processes.Ange. Chem. Int. Ed. Engl. 3:1–72

    Google Scholar 

  12. Eigen, M., Kruse, W., Maass, G., De Maeyer, L. 1964. Rate constants of protolytic reactions in aqueous solution.Prog. React. Kinet. 2:287–318

    Google Scholar 

  13. Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223

    PubMed  Google Scholar 

  14. Everitt, C.T., Redwood, W.R., Haydon, D.A. 1969. Problem of boundary layers in the exchange diffusion of water across bimolecular lipid membranes.J. Theor. Biol. 22:20–32

    PubMed  Google Scholar 

  15. Finkelstein, A., Cass, A. 1968. Permeability and electrical properties of thin lipid membranes.J. Gen. Physiol. 52:145s-172s

    Google Scholar 

  16. Flewelling, R.F., Hubbell, W.L. 1986. Hydrophobic ion interactions with membranes: Thermodynamic analysis of tetraphenylphosphonium binding to vesicles.Biophys. J. 49:531–540

    PubMed  Google Scholar 

  17. Flewelling, R.F., Hubbell, W.L. 1986. The membrane dipole potential in a self-consistent total membrane potential model.Biophys. J. 49:541–552

    PubMed  Google Scholar 

  18. Gupte, S., Wu, E.-S., Hoechli, L., Hoechli, M., Jacobson, K., Sowers, A.EE., Hackenbrock, C.R. 1984. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidationreduction components.Proc. Natl. Acad. Sci. USA 81: 2606–2610

    PubMed  Google Scholar 

  19. Gutknecht, J., Tosteson, D.C. 1973. Diffusion of weak acids across lipid bilayer membranes: Effects of chemical reactions in the unstirred layers.Science 182:1258–1261

    PubMed  Google Scholar 

  20. Gutman, M. 1984. The pH jump: Probing of macromolecules and solutions by a laser-induced, ultrashort proton pulsetheory and applications in biochemistry.Methods Biochem. Anal. 30:1–103

    PubMed  Google Scholar 

  21. Hall, J.E., Meed, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75–97

    Google Scholar 

  22. Hanstein, W.G., Hatefi, Y. 1974. Characterization and localization of mitochondrial uncoupler binding sites with an uncoupler capable of photoaffinity labeling.J. Biol. Chem. 249:1356–1362

    PubMed  Google Scholar 

  23. Haydon, D.A., Hladky, S.B. 1974. Ion transport across thin lipid membranes. A Critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187–282

    Google Scholar 

  24. Helfferich, F. 1962. Ion Exchange. McGraw-Hill, New York

    Google Scholar 

  25. Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid bilayer membranes.Biochim. Biophys. Acta 352:71–85

    PubMed  Google Scholar 

  26. Holz, R., Finkelstein, A. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.J. Gen. Physiol. 56:125–145

    Article  PubMed  Google Scholar 

  27. Honig, B.H., Hubbell, W.L., Flewelling, R.F. 1986. Electrostatic interactions in membranes and proteins.Annu. Rev. Biophys. Biophys. Chem. 15:163–193

    Google Scholar 

  28. Israelachvili, J. N. 1985. Intermolecular and Surface Forces. Academic, New York

    Google Scholar 

  29. Kasianowicz, J., Benz, R., McLaughlin, S. 1984. The kinetic mechanism by which CCCP (carbonyl cyanidem-chlorophenylhydrazone) transports protons across membranes.J. Membrane Biol. 82:179–190

    Google Scholar 

  30. Katre, N.V., Wilson, D.F. 1977. Interaction of uncouplers with the mitochondrial membrane: A high-affinity binding site.Arch. Biochem.Biophys. 184:578–585

    PubMed  Google Scholar 

  31. Katre, N.V., Wilson, D.F. 1978. Interaction of uncouplers with the mitochondrial membrane: Identification of the high affinity binding site.Arch. Biochem. Biophys. 191:647–656

    PubMed  Google Scholar 

  32. Kell, D.B. 1979. On the functional proton current pathway of electron transport phosphorylation. An electrodic view.Biochim. Biophys. Acta 549:55–99

    PubMed  Google Scholar 

  33. Lauger, P., Neumcke, B. 1973. Theoretical analysis of ionconductance in lipid bilayer membranes.In: Membranes, a Series of Advances G. Eisenman, editor. Vol. 2, pp. 1–59. Dekker, New York

    Google Scholar 

  34. LeBlanc, O.H., Jr. 1971. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes. Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227–251

    Google Scholar 

  35. Lowry, R.R., Tinsley, I.J. 1974. A simple sensitive method for lipid phosphorus.Lipids 9:491–492

    PubMed  Google Scholar 

  36. McLaughlin, S. 1977. Electrostatic potentials at membranesolution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  37. McLaughlin, S.G.A., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    Google Scholar 

  38. McLaughlin, S., Eisenberg, M. 1975. Antibiotics and membrane biology.Annu. Rev. Biophys. Bioeng. 4:335–366

    PubMed  Google Scholar 

  39. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature (London) 191:144–148

    Google Scholar 

  40. Nachliel, E., Gutman, M. 1984. Kinetic analysis of proton transfer between reactants adsorbed to the same micelle. The effect of proximity on the rate constants.Eur. J. Biochem. 143:83–88

    PubMed  Google Scholar 

  41. Neumcke, B., Bamberg, E. 1975. The action of uncouplers on lipid bilayer membranes.In: Membranes. Vol. 3. G. Eisenman, editor. Dekker, New York

    Google Scholar 

  42. Neumcke, B., Lauger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes: II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160–1170

    PubMed  Google Scholar 

  43. O'Shaughnessy, K., Hladky, S.B. 1983. Transient currents carried by the uncoupler, carbonyl cyanidem-chlorophenylhydrazone.Biochim. Biophys. Acta 724:381–387

    PubMed  Google Scholar 

  44. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane. Solutions to four relevant electrostatics problems.Nature (London) 221:844–846

    Google Scholar 

  45. Parsegian, A., Fuller, N., Rand, P. 1979. Measured work of deformation and repulsion of lecithin bilayers.Proc. Natl. Acad. Sci. USA. 76:2750–2754

    PubMed  Google Scholar 

  46. Prats, M., Teissie, J., Tocanne, J.-F. 1986. Lateral proton conduction at lipid water interfaces and its implications for the chemiosmotic-coupling hypothesis.Nature (London) 322:756–758

    Google Scholar 

  47. Smejtek, P., Hsu, K., Perman, W.H. 1976. Electrical conductivity in lipid bilayer membranes induced by pentachlorophenol.Biophys. J. 16:319–336

    PubMed  Google Scholar 

  48. Szabo, G., Eisenman, G., McLaughlin, S.G.A., Krasne, S. 1972. Ionic probes of membrane structures.Ann. N.Y. Acad. Sci. 195:273–290

    PubMed  Google Scholar 

  49. Teissie, J., Prats, M., Soucaille, P., Tocanne, J.F. 1985. Evidence for conduction of protons along the interface between water and a polar lipid monolayer.Proc. Natl. Acad. Sci. USA 82:3217–3221

    PubMed  Google Scholar 

  50. Terada, H. 1981. The interaction of highly active uncouplers of oxidative phosphorylation with mitochondria.Biochim. Biophys. Acta 639:225–242

    PubMed  Google Scholar 

  51. Terada, H., Van Dam, K. 1975. On the stoichiometry between uncouplers of oxidative phosphorylation and respiratory chains: The catalytic action of SF-6847 (3,5-di-tert-butyl-4-hydroxybenzylidenemalonitrile).Biochim. Biophys. Acta 387:507–518

    PubMed  Google Scholar 

  52. Tsui, F.C., Ojcius, D.M., Hubbell, W.L. 1985. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers.Biophys. J. 49:459–468

    Google Scholar 

  53. Vetter, K.J. 1967. Electrochemical Kinetics: Theoretical Aspects. Academic, New York

    Google Scholar 

  54. Westerhoff, H.V., Chen, Y.-D. 1985. Stochastic free energy transduction: The role of independent, small coupling units.Biochim. Biophys. Acta 768:257–292

    Google Scholar 

  55. Westerhoff, H.V., Melandri, B.A., Venturoli, G., Azzione, G.F., Kell, D.B. 1984. A minimal hypothesis for membranelinked free-energy transduction: The role of independent, small coupling units.Biochim. Biophys. Acta 768:257–292

    PubMed  Google Scholar 

  56. Wilson, D.F., Ting, H.P., Koppleman, M.S. 1971. Mechanism of action of uncouplers of oxidative phosphorylation.Biochemistry 10:2897–2902

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasianowicz, J., Benz, R. & McLaughlin, S. How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2′-chloro-4′ nitrosalicylanilide). J. Membrain Biol. 95, 73–89 (1987). https://doi.org/10.1007/BF01869632

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869632

Key Words

Navigation