The Journal of Membrane Biology

, Volume 113, Issue 1, pp 49–56 | Cite as

Cl transport in basolateral renal medullary vesicles: I. Cl transport in intact vesicles

  • John M. Bayliss
  • W. Brian Reeves
  • Thomas E. Andreoli
Articles

Summary

This paper provides the results of studies which characterized conductive36Cl flux in basolaterally enriched membrane vesicles prepared from rabbit renal outer medulla. Conductive36Cl uptake was studied under two different experimental conditions. In the first,36Cl flux was driven by an inside positive voltage created with oppositely directed Cl and gluconate gradients. In the second, an inwardly direct K+ gradient was used to drive36Cl uptake. By these two methods, voltage-sensitive36Cl uptake was shown to comprise about 45 and 65%, respectively, of the initial rates of total36Cl flux. Separate paired studies demonstrated that the conductive36Cl uptake was inhibited by the Cl channel blocker diphenylamine-2-carboxylate (DPC) with an IC50 for DPC of 154 μm. The voltagedependent36Cl uptake had an activation energy of 6.4 kcal/mole. This36Cl conductance had an anion selectivity sequence of I>Cl≧NO 3 ≫gluconate.

Key Words

Cl channels/bilayers Cl channels/vesicles thick ascending limb rectification channel conductance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayliss, J.M., Reeves, W.B., Andreoli, T.E. 1989. Hypertonicity collapses Cl channels in rabbit renal medullary vesicles.Clin. Res. 37:485a Google Scholar
  2. 2.
    Breuer, W. 1989. Characterization of chloride channels in membrane vesicles from the kidney outer medulla.J. Membrane Biol. 107:35–43Google Scholar
  3. 3.
    DiStefano, A., Wittner, M., Schlatter, E., Lang, H.J., Englert, H., Greger, R. 1985. Diphenylamine-2-carboxylate, a blocker of the Cl-conductive pathway in Cl-transporting epithelia.Pfluegers Arch. 405 (Suppl 1):S95-S100Google Scholar
  4. 4.
    Fong, P., Illsley, N.P., Widdicombe, J.H., Verkman, A.S. 1988. Chloride transport in apical membrane vesicles from bovine tracheal epithelium: Characterization using a fluorescent indicator.J. Membrane Biol. 104:233–239Google Scholar
  5. 5.
    Forbush, B., III. 1982. Characterization of right-side-out membrane vesicles rich in (Na, K)-ATPase and isolated from dog kidney outer medulla.J. Biol. Chem. 257:12678–12684Google Scholar
  6. 6.
    Forbush, B., III, Palfrey, H.C. 1983. [3H] bumetanide binding to membranes isolated from dog kidney outer medulla.J. Biol. Chem. 258:11787–11792Google Scholar
  7. 7.
    Garty, H., Rudy, B., Karlish, S.J.D. 1983. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogenous populations of membrane vesicles.J. Biol. Chem. 258:13094–13099Google Scholar
  8. 8.
    Giraldez, F., Sepúlveda, F.V., Sheppard, D.N. 1988. A chloride conductance activated by adenosine 3′,5′-cyclic monophosphate in the apical membrane ofNecturus enterocytes.J. Physiol. (London) 395:597–623Google Scholar
  9. 9.
    Gögelein, H. 1988. Chloride channels in epithelia.Biochim. Biophys. Acta. 947:521–547Google Scholar
  10. 10.
    Greger, R. 1981. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 390:30–37Google Scholar
  11. 11.
    Greger, R., Schlatter, E. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 396:315–324Google Scholar
  12. 12.
    Greger, R., Schlatter, E., Gögelein, H. 1987. Chloride channels in the luminal membrane of the rectal gland.Pfluegers Arch. 409:114–121Google Scholar
  13. 13.
    Hebert, S.C., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl absorption.J. Membrane Biol. 80:221–233Google Scholar
  14. 14.
    Hebert, S.C., Friedman, P.A., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways.J. Membrane Biol. 80:201–219Google Scholar
  15. 15.
    Jenkins, M.A., Reeves, W.B., Dubinsky, W.P., Molony, D.A., Andreoli, T.E. 1987. Hypertonicity inhibits conductive chloride efflux in rabbit renal medullary basolateral membranes.X Int. Congr. Nephrol., London. p. 572Google Scholar
  16. 16.
    Jørgensen, P.L. 1988. Purification of Na+, K+-ATPase: Enzyme sources, preparative problems, and preparation from mammalian kidney.Methods Enzymol 156:29–43Google Scholar
  17. 17.
    Landry, D.W., Reitman, M., Cragoe, E.J., Jr., Al-Awqati, Q. 1987. Epithelial chloride channel. Development of inhibitory ligands.J. Gen. Physiol. 90:779–798Google Scholar
  18. 18.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with Folin phenol reagent.J. Biol. Chem. 193:265–275Google Scholar
  19. 19.
    Molony, D.A., Reeves, W.B., Hebert, S.C., Andreoli, T.E. 1987. ADH increases apical Na+, K+, 2Cl entry in mouse medullary thick ascending limbs of Henle.Am. J. Physiol. 252:F177-F187Google Scholar
  20. 20.
    Reeves, W.B., Andreoli, T.E. 1989. Characteristics of single chloride channels in membrane vesicles from rabbit outer renal medulla.Clin. Res. 37:613a Google Scholar
  21. 21.
    Reeves, W.B., Andreoli, T.E. 1990. Cl transport in basolateral renal medullary vesicles. II. Cl channels into planar lipid bilayers.J. Membrane Biol. 113:57–65Google Scholar
  22. 22.
    Reeves, W.B., Dudley, M.A., Mehta, P., Andreoli, T.E. 1988. Diluting power of thick limbs of Henle. II. Bumetanide-sensitive22Na+ influx in medullary vesicles.Am. J. Physiol. 255:F1138-F1144Google Scholar
  23. 23.
    Reeves, W.B., McDonald, G.A., Mehta, P., Andreoli, T.E. 1989. Activation of K+ channels in renal medullary vesicles by cAMP-dependent protein kinase.J. Membrane Biol. 109:65–72Google Scholar
  24. 24.
    Schlatter, E., Greger, R. 1985. cAMP increases the basolateral Cl conductance in the isolated perfused medullary thick ascending limb of Henle's loop of the mouse.Pfluegers Arch. 405:367–376Google Scholar
  25. 25.
    Schneider, G.T., Cook, D.I., Gage, P.W., Young, J.A. 1985. Voltage sensitive, high-conductance chloride channels in the luminal membrane of cultured pulmonary alveolar (type II) cells.Pfluegers Arch. 404:354–357Google Scholar
  26. 26.
    Welsh, M.J. 1986. Single apical membrane anion channels in primary cultures of canine tracheal epithelium.Pfluegers Arch. 407 (Suppl 2):S116-S122Google Scholar
  27. 27.
    Wong, P.Y.D. 1988. Inhibition by chloride channel blockers of anion secretion in cultured epididymal epithelium and intact epididymis of rats.Br. J. Pharmacol. 94:155–163Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • John M. Bayliss
    • 1
    • 2
  • W. Brian Reeves
    • 1
    • 2
  • Thomas E. Andreoli
    • 1
    • 2
  1. 1.Division of Nephrology, Department of Internal MedicineUniversity of Arkansas College of MedicineLittle Rock
  2. 2.John L. McClellan Veterans Administration HospitalLittle Rock

Personalised recommendations