The Journal of Membrane Biology

, Volume 57, Issue 3, pp 213–221 | Cite as

Membrane current and noise measurements in voltage-clamped node ofRanvier

  • Rutgeris J. van den Berg
  • Willem H. Rijnsburger
Articles

Summary

In voltage-clamp configurations for nodes ofRanvier the axoplasm resistance functions as a voltage-current converter. In existing configurations this resistance cannot be measured directly. In the present arrangement the electrical resistances of the preparation (axoplasm, membrane and seals) can be measured only from two measurements. This allows us to: 1. calibrate the ionic current under voltage-clamp conditions, and 2. calculate the intensity of the current fluctuations, not arising from the membrane (background noise). The measured axoplasm resistances are considerably higher than the values calculated on the basis of fiber geometry and axoplasm resistivity. The difference is due to the presence of constrictions in the nerve fiber. Membrane current estimation based on geometrical parameters in the presence of wide seals may contain large errors. Variations in the axoplasm resistance for voltage-membrane current conversion were observed within 1.5 hr. In 68% of the fibers this resistance decreased with 30% of the original value. With our current calibration the values for the maximum sodium conductance\(\overline {g_{Na} } \) (at 0 mV membrane potential), maximum potassium conductance\(\overline {g_K } \) and leakage conductance\(\overline {g_L } \) are 49.5×10−8, 6.66×10−8 and 1.71×10−8 S, respectively. The contribution of the different noise sources to the total background noise was calculated at the holding potential. For frequencies below 103 Hz there is an excellent agreement between measured and calculated noise levels.

Keywords

Potassium Conductance Leakage Conductance Sodium Conductance Current Conversion Fiber Geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendat, J.S., Piersol, A.G. 1971. Random Data: Analysis and Measurement Procedures. Wiley-Interscience, New YorkGoogle Scholar
  2. Carpenter, D.O., Hovey, M.M., Bak, A.F. 1973. Measurements of intracellular conductivity inAplysia neurons: Evidence for organization of water and ions.Ann. N.Y. Acad. Sci. 204:502PubMedGoogle Scholar
  3. Chiu, S.Y., Ritchie, J.M., Rogart, R.B., Stagg, D. 1979. A quantitative description of membrane currents in rabbit myelinated nerve.J. Physiol. 292:149Google Scholar
  4. Conti, F., Hille, B., Neumcke, B., Nonner, W., Stämpfli, R. 1976. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier.J. Physiol. 262:699Google Scholar
  5. Derksen, H.E. 1965. Axom Membrane Voltage Fluctuations, Ph.D. Thesis, State University, Leiden,See also: Acta Physiol. Pharmacol. Neerl. 13:373Google Scholar
  6. Dodge, F.A., Frankenhaeuser, B. 1958. Membrane currents in isolated frog nerve fibre under voltage clamp conditions.J. Physiol. (London) 143:76Google Scholar
  7. Dodge, F.A. 1963. A Study of Ionic Permeability Changes Underlying Excitation in Myelinated Nerve Fibres of the Frog. Ph.D. Thesis, The Rockfeller University, N.Y. (see University Microfilms, Inc., Ann. Arbor, Mich., No. 64-7333)Google Scholar
  8. Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599PubMedGoogle Scholar
  9. Huxley, A.F., Stämpfli, R. 1951. Direct determination of membrane resting potential and action potential in single myelinated nerve fibres.J. Physiol. (London) 112:476Google Scholar
  10. Keana, J.F.W., Stämpfli, R. 1974. Effect of several “specific” chemical reagents on the Na+, K+ and leakage currents in voltage-clamped single nodes of Ranvier.Biochim. Biophys. Acta 373:18PubMedGoogle Scholar
  11. Moore, J.W., Del Castillo, J. 1959. An electronic electrode. IRENat. Conv. Rec. Pt.9:47Google Scholar
  12. Mozhaev, G.A., Mozhaeva, G.N., Naumov, A.P. 1970. The influence of ions on steady-state potassium conductance of the Ranvier node membrane.Tsitologiya,12,8:993Google Scholar
  13. Nonner, W. 1969. A new voltage clamp method forRanvier nodes.Pfluegers Arch. 309:176Google Scholar
  14. Nonner, W., Rojas, E., Stämpfli, R. 1975. Displacement currents in the node ofRanvier. Voltage and time dependence.Pfluegers Arch. 354:1Google Scholar
  15. Schwarz, W., Neumcke, B., Stämpfli, R. 1979. Longitudinal resistance of axoplasm in myelinated nerve fibres of the frog.Pfluegers Arch. 379:R 41Google Scholar
  16. Sigworth, F.J., 1980. The variance of sodium current fluctuations at the node ofRanvier. J. Physiol. (London) (In press) Google Scholar
  17. Stämpfli, R. 1969. Dissection of single nerve fibres and measurement of membrane potential changes ofRanvier nodes by means of the double air gap method.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. p. 157. Springer-Verlag, New YorkGoogle Scholar
  18. Tasaki, I. 1955. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fibre.Am. J. Physiol. 181:639PubMedGoogle Scholar
  19. Van den Berg, R.J. 1978. Electrical fluctuations in Myelinated Nerve Membrane. A Source of Information. Ph. D. Thesis, State University, Leiden. (See University Library, Leiden)Google Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Rutgeris J. van den Berg
    • 1
  • Willem H. Rijnsburger
    • 1
  1. 1.Laboratory of Physiology and Physiological PhysicsLeidenThe Netherlands

Personalised recommendations