The Journal of Membrane Biology

, Volume 33, Issue 1, pp 351–384 | Cite as

Active sodium transport and the electrophysiology of rabbit colon

  • Stanley G. Schultz
  • Raymond A. Frizzell
  • Hugh N. Nellans
Article

Summary

The electrophysiologic properties of rabbit colonic epithelial cells were investigated employing microelectrode techniques. Under open-circuit conditions, the transepithelial electrical potential difference (PD) averaged 20 mV, serosa positive, and the intracellular electrical potential (ψ mc ) averaged −32 mV, cell interior negative with respect to the mucosal solution; under short-circuit conditions,ψ mc averaged −46 mV. The addition of amiloride to the mucosal solution abolishes the transepithelialPD and active Na transport, andψ mc is hyperpolarized to an average value of −53 mV. These results indicate that Na entry into the mucosal cell is a conductive process which, normally, depolarizesψ mc .

The data obtained were interpreted using a double-membrane equivalent electrical circuit model of the “active Na transport pathway” involving two voltage-independent electromotive forces (emf's) and two voltage-independent resistances arrayed in series. Our observations are consistent with the notions that:
  1. (a)

    The emf's and resistances across the mucosal and baso-lateral membranes are determined predominantly by the emf (64mV) and resistance of the Na entry process and the emf (53 mV) and resistance of the process responsible for active Na extrusion across the baso-lateral membranes: that is, the electrophysiological properties of the cell appear to be determined solely by the properties and processes responsible for transcellular active Na transport. The emf of the Na entry process is consistent with the notion that the Na activity in the intracellular transport pool is approximately one-tenth that in the mucosal solution or about 14mM.

     
  2. (b)

    In the presence of amiloride, the transcellular conductance is essentially abolished and the total tissue conductance is the result of ionic diffusion through paracellular pathways.

     
  3. (c)

    The negative intracellular potential (with respect to the mucosal solution) is due primarily to the presence of a low resistance paracellular “shunt” pathway which permits electrical coupling between the emf at the baso-lateral membrane and the potential difference across the mucosal membrane; in the absence of this shunt, the “well-type” electrical potential profile characteristic of rabbit colonic cells would be ‘converted’ into a “staircase-type” profile similar to those reported for frog skin and toad urinary bladder by some investigators.

     

Keywords

Amiloride Frog Skin Equivalent Electrical Circuit Paracellular Pathway Electrical Potential Difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131Google Scholar
  2. Biber, T.U.L., Sanders, M.L. 1973. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529Google Scholar
  3. Boulpaep, E.L. 1976. Electrical phenomena in the nephron.Kidney Int. 9:88Google Scholar
  4. Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543Google Scholar
  5. Chen, J.S., Walser, M. 1975. Sodium fluxes through the active transport pathway in toad bladder.J. Membrane Biol. 21:87Google Scholar
  6. Civan, M.M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Am.J. Physiol. 219:234Google Scholar
  7. Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pfluegers Arch. 321:91Google Scholar
  8. Engbaek, L., Hoshiko, T. 1957. Electrical potential gradients through frog skin.Acta Physiol. Scand. 39:348Google Scholar
  9. Essig, A., Caplan, S.R. 1968. Energetics of active transport processes.Biophys. J. 8:1434Google Scholar
  10. Finkelstein, A. 1964. Carrier model for active transport of ions across a mosaic membrane.Biophys. J. 4:421Google Scholar
  11. Finkelstein, A., Mauro, A. 1963. Equivalent circuits as related to ionic systems.Biophys. J. 3:215Google Scholar
  12. Flemström, G., Sachs, G. 1975. Ion transport by amphibian antrum in vitro. I. General characteristics.Am. J. Physiol. 228:1188Google Scholar
  13. Frazier, H.S. 1962. The electrical potential profile of the isolated toad bladder.J. Gen. Physiol. 59:794Google Scholar
  14. Frizzell, R.A., Koch, M.J., Cooper, D., Schultz, S.G. 1975. Ion transport by rabbit colon: Effect of amiloride.Fed. Proc. 34:285Google Scholar
  15. Frizzell, R.A., Koch, M.J., Schultz, S.G. 1976. Ion transport by rabbit colon. I. Active and Passive components.J. Membrane Biol. 27:297Google Scholar
  16. Frizzell, R.A., Schultz, S.G. 1976. Ion transport by rabbit colon: Effect of amphotericin B.Fed. Proc. 35:602Google Scholar
  17. Frömter, E. 1972. The route of passive ion movement though the epithelium of Necturus gallbladder.J. Membrane Biol. 8:259Google Scholar
  18. Fuchs, W., Larsen, E.H., Hviid, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) (in press) Google Scholar
  19. Fuchs, W., Larsen, E.H., Lindemann, B. 1975. Estimation of intracellular Na-activity and of Na-permeability from current-voltage curves of Na-channels in frog skin.Pfluegers Arch. 355:R 71Google Scholar
  20. Garrahan, P.J., Glynn, I.M. 1967. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump.J. Physiol. (London) 192:237Google Scholar
  21. Handler, J.S., Preston, A.S., Orloff, J. 1972. Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells.Am. J. Physiol. 222:1071Google Scholar
  22. Helman, S.I. 1972. Determination of electrical resistance of the isolated cortical collecting tubule and its possible anatomic location.Yale J. Biol. Med. 45:339Google Scholar
  23. Helman, S.J., Fisher, R.S. 1976. Localization and determination of the driving force for sodium transport by the frog skin.Fed. Proc. 35:702Google Scholar
  24. Helman, S.I., O'Nell, R.G., Fisher, R.S. 1975. Determination of theE Na of frog skin from studies of its current-voltage relationship.Am. J. Physiol. 229:947Google Scholar
  25. Higgins, J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder. I. Inverse relationship between potential difference and resistance in tightly mounted preparations.Pfluegers Arch. 358:41Google Scholar
  26. Higgins, J.T., Frömter, E. 1974. Potential profile in Necturus urinary bladder.Pfluegers Arch. 347:R 32Google Scholar
  27. Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-D-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121Google Scholar
  28. Hoshiko, T. 1961. Electrogenesis in frog skin.In: Biophysics of Physiological and Pharmacological Actions. p. 31. American Association for the Advancement of Science, WashingtonGoogle Scholar
  29. Katchalsky, A., Curran, P.F. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, CambridgeGoogle Scholar
  30. Kedem, O., Caplan, S.R. 1965. Degree of coupling and its relation to efficiency of energy conversion.Trans. Faraday Soc. 61:1897Google Scholar
  31. Larsen, E.H. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport Mechanisms in Epithelia. H. H. Ussing and N.A. Thorn, editors. p. 131. Munksgaard, CopenhagenGoogle Scholar
  32. Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1Google Scholar
  33. Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41Google Scholar
  34. Lindemann, B., Driessche, W., van 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292Google Scholar
  35. Lindemann, B., Voute, C. 1976. Structure and function of the epidermis.In: Frog Neurobiology. R. Llinas and W. Precht, editors. Chapter 5, p. 169. Springer-Verlag, BerlinGoogle Scholar
  36. Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365Google Scholar
  37. Mandel, L.J., Curran, P.F. 1972. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway.J. Gen. Physiol. 59:503Google Scholar
  38. Mitchell, P. 1970. Reversible coupling between transport and chemical reactions.In: Membranes and Ion transport. E.E. Bittar, editor. Vol. 1, p. 192. Wiley-Interscience, LondonGoogle Scholar
  39. Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135Google Scholar
  40. Nagel, W., Dörge, A. 1970. Effect of amiloride on sodium transport of frog skin. I. Action on intracellular sodium content.Pfluegers Arch. 317:84Google Scholar
  41. Oster, G., Perelson, A., Katchalsky, A. 1971. Network thermodynamics.Nature (London) 234:393Google Scholar
  42. Oster, G.F., Perelson, A.S., Katchalsky, A. 1973. Network thermodynamics: Dynamic modeling of biophysical systems.Q. Rev. Biophys. 6:1Google Scholar
  43. Peusner, L. 1970. The Principles of Network Thermodynamics: Theory and Biophysical Applications. Ph.D. Thesis. Harvard University, CambridgeGoogle Scholar
  44. Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium.J. Gen. Physiol. 64:1Google Scholar
  45. Reuss, L., Finn, A.L. 1975. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71Google Scholar
  46. Rick, R., Dörge, A., Nagel, W. 1975. Influx and efflux of sodium at the outer surface of frog skin.J. Membrane Biol. 22:183Google Scholar
  47. Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum.J. Gen. Physiol. 57:639Google Scholar
  48. Saito, T., Lief, P.D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265Google Scholar
  49. Schultz, S.G. 1972. Electrical potential differences and electromotive forces in epithelial tissues.J. Gen. Physiol. 59:794Google Scholar
  50. Schultz, S.G., Frizzell, R.A. 1976. Ionic permeability of epithelial tissues.Biochim. Biophys. Acta 443:181Google Scholar
  51. Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. An equivalent electrical circuit model for sodium transporting epithelia.J. Theoret. Biol. (in press) Google Scholar
  52. Schultz, S.G., Zalusky, R. 1964. Ion transport in rabbit ileum. I. Short-circuit current and Na fluxes.J. Gen. Physiol. 47:567Google Scholar
  53. Ussing, H.H. 1960. The Alkali Metal Ions in Biology. Springer-Verlag, BerlinGoogle Scholar
  54. Ussing, H.H., Erlij, D., Lassen, U. 1974. Transport pathways in biological membranes.Annu. Rev. Physiol. 36:17Google Scholar
  55. Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484Google Scholar
  56. Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110Google Scholar
  57. Vieira, F.L., Caplan, S.R., Essig, A. 1972a. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state.J. Gen. Physiol. 59:60Google Scholar
  58. Vieira, F.L., Caplan, S.R., Essig, A. 1972b. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption.J. Gen. Physiol. 59:77Google Scholar
  59. Whittembury, G. 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795Google Scholar
  60. Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • Stanley G. Schultz
    • 1
  • Raymond A. Frizzell
    • 1
  • Hugh N. Nellans
    • 1
  1. 1.Department of PhysiologyUniversity of Pittsburgh School of MedicinePittsburgh

Personalised recommendations