The Journal of Membrane Biology

, Volume 56, Issue 3, pp 191–201 | Cite as

Measurement of membrane potentials (ψ) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation

  • Kang Cheng
  • Howard C. Haspel
  • Mary Lou Vallano
  • Babatunde Osotimehin
  • Martin Sonenberg
Article

Summary

The accumulation of the lipophilic cation, triphenylmethylphosphonium, has been employed to determine the resting membrane potential in human erythrocytes, turkey erythrocytes, and rat white adipocytes. The triphenylmethylphosphonium cation equilibrates rapidly in human erythrocytes in the presence of low concentrations of the hydrophobic anion, tetraphenylborate. Tetraphenylborate does not accelerate the uptake of triphenylmethylphosphonium ion by adipocytes. The cell associatedvs. extracellular distribution of the triphenylmethylphosphonium ion is proportional to changes in membrane potential. The distribution of this ion reflects the membrane potential determining concentration of the ion with dominant permeability in a “Nernst” fashion. The resting membrane potentials for the human erythrocyte, turkey erythrocyte, and rat white adipocyte were found to be −8.4±1.3, −16.8±1.1, and −58.3±5.0 mV, respectively, values which compare favorably with values obtained by other methods. In addition, changes in membrane potential can be assessed by following triphenylmethylphosphonium uptake without determining the intracellular water space. The method has been successfully applied to a study of hormonally induced changes in membrane potential of rat white adipocytes.

Keywords

Membrane Potential Human Physiology Human Erythrocyte Rest Membrane Potential Intracellular Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altendorf, K., Hirata, H., Harold, F.M. 1975. Accumulation of lipid soluble ions and of rubidium as indicators of the electrical potential of membrane vesicles ofEscherichia coli.J. Biol. Chem. 250:1405PubMedGoogle Scholar
  2. Azzone, G.F., Bragadin, T.N., Pozzan, T., Dell'Antone, P. 1976. Proton electrochemical potential in steady state rat liver mitochondria.Biochim. Biophys. Acta 459:96Google Scholar
  3. Azzone, G.F., Pozzan, T., Massari, S., Bragadin, M. 1978. Proton electrochemical gradients and rate of controlled respiration in mitochondria.Biochim. Biophys. Acta 501:296PubMedGoogle Scholar
  4. Bakeeva, L.E., Grinius, L.L., Jasaitis, A.A., Kuliene, V.V., Levitsky, D.D., Liberman, E.A., Severina, I.I., Skulachev, P. 1970. Conversion of biomembranes produced energy into electrical form. II. Intact mitochondria.Biochim. Biophys. Acta 216:13PubMedGoogle Scholar
  5. Bakker, E.P., Rottenberg, J., Caplan, S.P. 1976. An estimation of the light induced electrochemical potential difference on protons across the membrane ofHalobacterium holobium.Biochim. Biophys. Acta 440:557PubMedGoogle Scholar
  6. Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311Google Scholar
  7. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disufonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207Google Scholar
  8. Clausen, T., Rodbell, M., Durand, P. 1969. The metabolism of isolated fat cells. VII. Sodium-linked, energy-dependent, and ouabain-sensitive potassium accumulation in ghosts.J. Biol. Chem. 244:1252PubMedGoogle Scholar
  9. Dahl, J.L., Hokin, L.E. 1974. The Na+−K+ ATPase.Annu. Rev. Biochem. 43:327PubMedGoogle Scholar
  10. Deutsch, C., Erecinska, R., Werrlein, R., Silver, I.A. 1979a. Cellular energy metabolism, trans-plasma, and trans-mitochondrial membrane potentials and pH-gradients in mouse neuroblastoma.Proc. Nat. Acad. Sci. USA 76:2175PubMedGoogle Scholar
  11. Deutsch, C.J., Holiam, A., Holiam, S.K., Daniele, R.P., Wilson, D.F. 1979b. Transmembrane electrical and pH gradients across human erythrocytes and human peripheral lymphocytes.J. Cell. Physiol. 99:79PubMedGoogle Scholar
  12. Deutsch, C., Küla, T. 1978. Transmembrane electrical and pH gradients ofP. denitrificans and their relationship to oxidative phosphorylation.FEBS Lett. 87:145PubMedGoogle Scholar
  13. Freedman, J.C., Hoffman, J.F. 1979a. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157PubMedGoogle Scholar
  14. Freedman, J.C., Hoffman, J.F. 1979b. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187PubMedGoogle Scholar
  15. Fünder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234Google Scholar
  16. Gliemann, J., Osterlind, K., Vinten, J., Gammeltoft, S. 1972. A procedure for measurement of distribution spaces in isolated fat cells.Biochim. Biophys. Acta 286:1PubMedGoogle Scholar
  17. Grinius, L.L., Jasaitas, A.A., Kadziauskas, Y.P., Liberman, E.A., Skulachev, V.P., Topali, V.P., Tsofina, L.M., Vladimirova, M.A. 1970. On conversions of biomembrane produced energy into electric form. I. Submitochondrial particles.Biochim. Biophys. Acta 216:1PubMedGoogle Scholar
  18. Grollman, E.F., Lee, G., Ambesi-Impiombato, H.G., Meldolesi, M.F., Aloj, S.M., Coon, H.G., Kaback, H.R., Kohn, L.D. 1977. Effects of thyrotropin on the thyroid cell membrane: Hyperpolarization induced by hormone-receptor interaction.Proc. Nat. Acad. Sci. USA 74:2352PubMedGoogle Scholar
  19. Harris, E.J., Maizels, M. 1952. Distribution of ions in suspensions of human erythrocytes.J. Physiol. (London) 118:40Google Scholar
  20. Heinz, E.D., Geck, P., Peitreyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264:428PubMedGoogle Scholar
  21. Hirata, H., Altendorf, J., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804PubMedGoogle Scholar
  22. Hoffman, J.E., Laris, P.C. 1974. Determinations of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519Google Scholar
  23. Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials in amphibian red cells.Proc. Int. Union Physiol. Sci. 9:253 (abstr.)Google Scholar
  24. Horn, L.W., Rogus, E.M., Zierler, K.L. 1973. Water content of isolated fat cells.Biochim. Biophys. Acta 313:399PubMedGoogle Scholar
  25. Horn, L.W., Zierler, K.L. 1975. Effects of external potassium on potassium efflux and accumulation by rat white adipocytes.J. Physiol. (London) 253:207Google Scholar
  26. Hunter, M.J. 1971. A quantitative estimate of the non-exchangerestricted chloride permeability of the human red cell.J. Physiol. (London) 218:49P (abstr.)Google Scholar
  27. Hunter, M.J. 1974. The use of lipid bilayer as cell membrane models: An experimental test using the ionophore, valinomycin.In: Drugs and Transport Processes. B.A. Callinghan, editor. p. 227. Macmillan, LondonGoogle Scholar
  28. Katz, B. 1966. Nerve, Muscle, and Synapse. p. 41. McGraw Hill, New YorkGoogle Scholar
  29. Kimmich, G.A., Philo, R.D., Eddy, A.A. 1977. The effects of ionophores on the fluorescence of the cation 3,3′-dipropyloxadicarbocyanine in the presence of pigeon erythrocytes, erythrocyte ghosts, or liposomes.Biochem. J. 168:81PubMedGoogle Scholar
  30. Knauf, P.A., Fuhrman, D.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membranes.J. Gen. Physiol. 69:363PubMedGoogle Scholar
  31. Komar, E., Tanner, W. 1976. The determination of the membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport.Eur. J. Biochem. 70:197PubMedGoogle Scholar
  32. Korchak, H.M., Weissman, G. 1978. Change in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation.Proc. Nat. Acad. Sci. USA 75:3818PubMedGoogle Scholar
  33. Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, M. Rorth and Astrüp, P., editors. p. 291. Academic Press, New YorkGoogle Scholar
  34. Lassen, U.V., Nielsen, A.M.T., Page, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells. Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6:269Google Scholar
  35. Lichtshtein, D., Dunlop, K., Kaback, H.R., Blume, A.J. 1979a. Mechanism of monensin induced hyperpolarization of neuroblastoma-glioma hybrid WG108-15.Proc. Nat. Acad. Sci. USA 76:2580PubMedGoogle Scholar
  36. Lichtshtein, D., Kaback, H.R., Blume, A.J. 1979b. Use of lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Nat. Acad. Sci. USA 76:650PubMedGoogle Scholar
  37. Livingston, J.N., Lockwood, D.H. 1974. Direct measurements of sugar uptake in small and large adipocytes from young and adult rats.Biochem. Biophys. Res. Commun. 61:989PubMedGoogle Scholar
  38. Lombardi, F.J., Reeves, J.P., Short, S.A., Kaback, H.R. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.Ann. N.Y. Acad. Sci. 227:312PubMedGoogle Scholar
  39. Macey, R.I., Adorant, J.S., Orme, F.W. 1978. Erythrocyte membrane potentials determined by hydrogen ion distribution.Biochim. Biophys. Acta 512:284PubMedGoogle Scholar
  40. Miller, A.G., Budd, K. 1976. Evidence for a negative membrane potential and for movement of Cl against its electrochemical gradient in theAscomytes neocosmosporo vasinfect.J. Bacteriol. 132:741Google Scholar
  41. Miller, Z.V., Schlosser, G.H., Beigelman, P.M. 1966. Electrical potentials and isolated fat cells.Biochim. Biophys. Acta 112:375PubMedGoogle Scholar
  42. Minemura, T., Lacy, W.W., Crofford, O.B. 1970. Regulation of the transport and metabolism of amino acids in isolated fat cells. Effect of insulin and a possible role for adenosine 3′, 5′-monophosphate.J. Biol. Chem. 245:3872PubMedGoogle Scholar
  43. Perry, M.C., Hales, C.N. 1969. Rates of efflux and intracellular concentrations of potassium sodium, and chloride ions in isolated fat cells from the rat.Biochem J. 115:865PubMedGoogle Scholar
  44. Ramos, S., Grollman, E.F., Lazo, P.S., Dyer, S.A., Habig, W.H., Hardegree, M.C., Kaback, H.R., Kohn, L.D. 1979. Effect of tetanus toxin on the accumulation of the permeant lipophilic cation, tetraphenyl phosphonium by guinea pig brain synaptosomes.Proc. Nat. Acad. Sci. USA 76:4783PubMedGoogle Scholar
  45. Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.J. Biol. Chem. 239:375PubMedGoogle Scholar
  46. Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: Merocyanine and oxonal dyes.J. Biol. Chem. 254:2047PubMedGoogle Scholar
  47. Russell, J.T., Beeler, T., Martonosi, A. 1979b. Opical probe responses on sarcoplamic reticulum: Oxacarboxyanines.J. Biol. Chem. 254:2040PubMedGoogle Scholar
  48. Sarkadi, B., Szasz, I., Gardos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations in cation pump studies.J. Membrane Biol. 26:357Google Scholar
  49. Schuldiner, S., Kaback, H.R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemisty 14:5451Google Scholar
  50. Skulachev, V.P. 1971. Energy transformation in the respiratory chain.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 4, p. 127. Academic Press, New YorkGoogle Scholar
  51. Waggoner, A.S. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317Google Scholar
  52. Waggoner, A.S. 1979. Dye indicators of membrane potentials.Annu. Rev. Biophys. Bioeng. 8:47PubMedGoogle Scholar
  53. Warburg, E.J. 1922. Carbonic acid compounds and hydrogen activities in blood and salt solutions.Biochem. J. 16:152Google Scholar
  54. Zierler, K.L. 1972. Insulin, ions, and membrane potentials.In: Handbook of Physiology Section 7: Endocrinology, Vol. I: Endocrine Pancreas. R.O. Greep, and E.B. Astwood, editors. Vol. 22, p. 347, Williams & Wilkins, BaltimoreGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Kang Cheng
    • 1
  • Howard C. Haspel
    • 1
  • Mary Lou Vallano
    • 1
  • Babatunde Osotimehin
    • 1
  • Martin Sonenberg
    • 1
  1. 1.Memorial Sloan-Kettering Cancer Center and Graduate School of Medical SciencesCornell UniversityNew York

Personalised recommendations