Rapid effect of light on the K+ channel in the plasmalemma ofNitella

Summary

Chlorophyll fluorescence, plasmalemma potential and resistance were measured simultaneously and subjected to a kinetic analysis. It was found that the light-induced changes of all three signals have two time constants in common. The faster one (τ4=ca. 20 sec) was assigned to the action of light-induced proton uptake across the thylakoid membrane on the plasmalemma H+ pump. The slower one (τ5a=40 sec) is related to the light action of an unknown photosynthetic process on the potassium channel. The action on the K+ channel was revealed from the reversal potential of the related effect on membrane potential. The comparison of the data with findings of other authors led to the hypothesis that the unknown photosynthetic mechanism is the depletion of NADP+, which stimulates the uptake of Ca2+ from the cytosol, which is required for the NAD-kinase. The resulting change in cytosolic Ca2+ modulates the number of open K+ channels.

This is a preview of subscription content, log in to check access.

References

  1. Abe, S., Takeda J. 1986. The membrane potential of enzymatically isolatedNitella expansa protoplasts as compared with their intact cells.J. Exp. Bot. 36:238–252

    Google Scholar 

  2. Andrianov, V.K., Bulychev, A.A., Kurella, G.A., Litvin, F.F. 1971. Effect of light on the resting potential and the activity of the cations H+, K+ and Na+ in the vacuolar sap of the cells ofNitella.Biofizika 16:1033–1036

    Google Scholar 

  3. Azimov, R.R., Geletyuk, V.I., Berestovskii, G.N. 1987. Single potential-dependent K+-channel of the cells of the algaNitellopsis obtusa.Biophysics 32:82–88

    Google Scholar 

  4. Beilby, M.J. 1986. Factors controlling the K+ conductance inChara.J. Membrane Biol. 93:187–193

    Google Scholar 

  5. Beilby, M.J., Coster, H.G.L. 1979. The action potential inChara corallina: III. The Hodgkin-Huxley parameters for the plasmalemma.Aust. J. Plant Physiol. 6:323–335

    Google Scholar 

  6. Bisson, M.A. 1986. The effect of darkness on active and passive transport inChara corallina.J. Exp. Bot. 27:8–21

    Google Scholar 

  7. Bode, H.W. 1964. Network, Analysis and Feed-back Amplifier Design. D. van Nostrand, New York

    Google Scholar 

  8. Coleman, H.A. 1986. Chloride currents inChara — A patchclamp study.J. Membrane Biol. 93:55–61

    Google Scholar 

  9. Cook, D.L., Ikeuchi, M., Fujimoto, W.Y. 1984. Lowering of pH i inhibits Ca2+-activated K+-channels in pancreatic β-cells.Nature (London) 311:269–271

    Google Scholar 

  10. Coster, H.G.L., Hope, A.B. 1968. Ionic relations of cells ofChara australis.Aust. J. Biol Sci. 21:243–254

    Google Scholar 

  11. Dau, H., Hansen, U.P. 1988a. Kinetic responses of the oxygen evolution induced by blue and by far-red light.In: Photoacoustic and Photothermal Phenomena. P. Hess and J. Pelzl, editors. Springer Series in Optical Sciences. Vol. 58, pp. 531–532. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  12. Dau, H., Hansen, U.P. 1988b. Studies on the adaptation of intact leaves to changing light intensities, by a kinetic analysis of chlorophyll fluorescence and of oxygen-evolution as measured by the photoacoustic signal.Photosynth. Res. 20:59–83

    Google Scholar 

  13. Eigen, M. 1968. New looks and outlooks in physical enzymology.Q. Rev. Biophys. 1(1):3–33

    PubMed  Google Scholar 

  14. Felle, H., Bentrup, F.W. 1976. Effect of light upon membrane potential, conductance and ion fluxes inRiccia fluitans.J. Membrane Biol. 27:153–170

    Google Scholar 

  15. Felle, H., Bertl, A. 1986. Light-induced cytoplasmic changes and their interrelation to the activity of the electrogenic proton pump inRiccia fluitans.Biochim. Biophys. Acta 848:176–182

    Google Scholar 

  16. Findlay, G.P. 1982. Electrogenic and diffusive components of the membrane ofHydrodictyon africanum.J. Membrane Biol. 68:179–189

    Google Scholar 

  17. Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62–77

    Google Scholar 

  18. Fisahn, J., Hansen, U.P. 1986. The influence of temperature on a K+-channel and on a carrier-type transporter inNitella.J. Exp. Bot. 37:440–460

    Google Scholar 

  19. Fisahn, J., Hansen, U.-P., Gradmann, D. 1986. Determination of charge, stoichiometry and reaction constants fromI–V curve studies on a K+-transporter inNitella.J. Membrane Biol. 94:245–252

    Google Scholar 

  20. Fisahn, J., Mikschl, E., Hansen, U.P. 1986. Separate oscillations of a K+-channel and of a current-source inNitella.J. Exp. Bot. 37:34–47

    Google Scholar 

  21. Fujii, S., Shimmen, T., Tazawa, M. 1979. Effect of intracellular pH on the light-induced potential change and electrogenic activity in tonoplast-free cells ofChara australis.Plant Cell Physiol. 20:1315–1328

    Google Scholar 

  22. Haake, O. 1892. Ueber die Ursachen electrischer Stroeme in Pflanzen.Flora (Jena) 75:455–487

    Google Scholar 

  23. Hansen, U.-P. 1978. Do light-induced changes in the membrane potential ofNitella reflect the feed-back regulation of a cytoplasmic parameter?J. Membrane Biol. 41:197–224

    Google Scholar 

  24. Hansen, U.P. 1980. Homeostasis inNitella: Adaption of H+-transport to the photosynthetic load.In: Plant Membrane Transport. Current conceptual issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors. pp. 587–588. Elsevier, Amsterdam

    Google Scholar 

  25. Hansen, U.P. 1985. Messung und reaktionskinetische Interpretation von Frequenzgängen der Lichtwirkung auf den elektrogenen Transport über die Plasmamembran der AlgeNitella.Ber. Deutsch. Bot. Ges. 92:105–118

    Google Scholar 

  26. Hansen, U.P., Keunecke, P. 1977. The parallel pathways of the action of light on membrane potential inNitella.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty, and J. Dainty, editors. pp. 333–340. C.N.R.S., Rouen/Paris

    Google Scholar 

  27. Hansen U.P., Kolbowski, J., Dau, H. 1987. Relationship between photosynthesis and plasmalemma transport.J. Exp. Bot. 38:1965–1981

    Google Scholar 

  28. Hansen, U.P., Kolbowski, J., Vanselow, K.H., Dau, H., Lübke, P. 1989. Möglichkeiten eines Biotests mit Hilfe der linearen Analyse der Kinetik der Signale aus dem photosynthetischen Apparat I. Grundlagen und theoretischer Hintegrund.In: Grundlagen und Anwendungsbereiche der Chlorophyll-Fluoreszenz D. Ernst, and C. Schmidt, editors.Dortmunder Beitr. Wasserforschung 37:96–116

  29. Jarrett, H.W., Brown C.J., Black, C.C., Cormier, M.J. 1982. Evidence that calmodulin is in the chloroplast of peas and serves a regulatory role in photosynthesis.J. Biol. Chem. 257:13795–13804

    PubMed  Google Scholar 

  30. Keifer, D.W., Lucas, W. 1982. Potassium channels inChara corallina.Plant Physiol. 69:781–788

    Google Scholar 

  31. Keifer, D.W. Spanswick, R.M. 1979. Correlation of adenosine triphosphate levels inChara corallina with the activity of the electrogenic pump.Plant Physiol. 64:165–168

    Google Scholar 

  32. Keunecke, P. 1974. Vergleiche der lichtabhängigen Änderungen von Membranwiderstand und Membranspannung vonNitella.Ber. Deutsch. Bot. Ges. 87:529–536

    Google Scholar 

  33. Kikuyama, M. 1986. Tonoplast action potential inCharaceae.Plant Cell Physiol. 27:1461–1468

    Google Scholar 

  34. Kikuyama, M., Fujii, S., Hayama, T., Tazawa, M. 1979. Relationship between light-induced potential change and internal ATP concentration in chloroplast-freeChara cells.Plant Cell Physiol. 20:993–1002

    Google Scholar 

  35. Köhler, K., Steigner, W., Kolbowski, J., Hansen, U.P., Simonis, W., Urbach, W. 1986. Potassium channels inEremosphaera viridis. II.IV-curve studies.Planta 167:66–75

    Google Scholar 

  36. Köhler, K., Steigner, W., Simonis, W., Urbach, W. 1985. Potassium channels ofEremosphaera viridis. I. Influence of cattions and pH on resting potential and an action potential like signal.Planta 166:490–499

    Google Scholar 

  37. Kolbowski, J., Keunecke, P., Thiel, M., Martens, J., Hansen, U.P., Sanders, D., Slayman, C.L. 1985. Extended kinetics: Erweiterung eines Modells der Regelung des transmembranen Transportes inNitella mit Hilfe gemeinsamer Zeitkonstanten in den Signalen von verschiedenen Ausgängen und ihrer Beeinflussung durch Gifte.Ber. Deutsch. Bot. Ges. 92:119–129

    Google Scholar 

  38. Kolbowski, J., Keunecke, P., Hansen, U.P. 1984. Detection of a common time-constant in the response of membrane potential and of chlorophyll-fluorescence inNitella.In: Membrane Transport in Plants. W.J. Cram, K. Janacek, R. Rybova, and K. Sigler, editors. pp. 49–50. Academia, Prague

    Google Scholar 

  39. Kourie, J.I., Findlay, G.P. 1989. Ionic currents across the membranes ofChara inflata cells. III. Ca2+-induced modification in the behavior of K+ and Cl-currents.J. Exp. Bot. (in press)

  40. Kreimer, G., Melkonian, M., Holtum, J.A.M., Latzko, E. 1985b. Characterization of calcium fluxes across the envelope of intact spinach chloroplasts.Planta 166:515–523

    Google Scholar 

  41. Kreimer, G., Melkonian, M., Latzko, E., 1985a. An electrogenic uniport mediates light-dependent Ca2+ influx into intact spinach chloroplasts.FEBS Lett. 180:253–258

    Google Scholar 

  42. Lucas, W.J. 1984. How are the plasmalemma transport processes ofChara regulated?In: Membrane Transport in Plants. W.J. Cram, K. Janacek, R. Rybova, and K. Sigler, editors. pp. 459–465. Academia, Prague

    Google Scholar 

  43. Lühring, H., Tazawa, M. 1985. Effect of cytoplasmic Ca2+ on the membrane potential and membrane resistance ofChara plasmalemma.Plant Cell. Physiol. 26:635–646

    Google Scholar 

  44. Lunevsky, V.Z., Zherelova, O.M., Vostrikov, I.Y., Berestovsky, G.N. 1983. Excitation ofCharaceae cell membranes as a result of activation of calcium and chloride channels.J. Membrane Biol. 72:43–58

    Google Scholar 

  45. Lüttge, U. 1973. Photosynthetic O2-evolution and apparent H+-uptake by slices of greening barley and maize leaves in aerobic and anaerobic solutions.Can. J. Bot. 51:1953–1957

    Google Scholar 

  46. MacRobbie, E.A.C. 1966. Metabolic effects on ion fluxes inNitella translucens I. Active influxes.Aust. J. Biol. Sci. 19:363–370

    Google Scholar 

  47. MacRobbie, E.A.C., Banfield, J. 1988. Calcium influx at the plasmalemma ofChara corallina.Planta 176:98–108

    Google Scholar 

  48. Miller, A.J., Sanders, D. 1987. Depletion of cytosolic free calcium induced by photosynthesis.Nature (London) 326:397–400

    Google Scholar 

  49. Mimura, T., Shimmen, T., Tazawa, M. 1984. Adenine nucleotide levels and metabolism-dependent membrane potential in cells ofNitellopsis obtusa groves.Planta 162:77–84

    Google Scholar 

  50. Mimura, T., Tazawa, M. 1983. Effect of intracellular Ca2+ on membrane potential and membrane resistance in tonoplast-free cells ofNitellopsis obtusa.Protoplasma 118:49–55

    Google Scholar 

  51. Mimura, T., Tazawa, M. 1986a. Analysis of rapid light-induced potential change in cells ofChara corallina.Plant Cell Physiol. 27:895–902

    Google Scholar 

  52. Mimura, T., Tazawa, M. 1986b. Light-induced membrane hyperpolarizations and adenine nucleotide levels in perfusedCharacean cells.Plant Cell Physiol. 27:319–330

    Google Scholar 

  53. Muto, S., Izawa, S., Miyachi, S. 1982. Light-induced Ca2+ uptake by intact chloroplasts.FEBS Lett. 39:250–254

    Google Scholar 

  54. Muto, S., Miyachi, S., Usuda, H., Edwards, G.E., Bassham, J.A. 1981. Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves.Plant Physiol. 68:324–328

    Google Scholar 

  55. Nagai, R., Tazawa, M. 1962. Changes in resting potential and ion absorption induced by light in a single plant cell.Plant Cell Physiol. 3:323–339

    Google Scholar 

  56. Nishizaki, Y. 1968. Light-induced changes in bioelectric potential inChara.Plant Cell Physiol. 9:377–387

    Google Scholar 

  57. Okihara, K., Kiyosawa, K. 1988. Ion composition of theChara internode.Plant Cell Physiol. 29:21–25

    Google Scholar 

  58. Raven, J.A. 1969. Effects of inhibitors on photosynthesis and the active influxes of K and Cl inHydrodictyon africanum.New Phytol. 68:1089–1113

    Google Scholar 

  59. Reid, R.J., Walker, N.A. 1983. Adenylate concentrations inChara: Variability, effects of inhibitors and relationship to cytoplasmic streaming.Aust. J. Plant Physiol. 10:373–383

    Google Scholar 

  60. Remis, D., Bulychev, A.A., Kurella, G.A. 1988. Photo-induced pH changes in the vicinity of isolatedPeperomia metallica chloroplasts.J. Exp. Bot. 39:633–640

    Google Scholar 

  61. Saito, K., Senda, M. 1973. The effect of external pH on the membrane potential ofNitella and its linkage to metabolism.Plant Cell Physiol. 14:1045–1052

    Google Scholar 

  62. Sanders, D., Hansen, U.P., Gradmann, D. 1986. Control of plasma membrane permeability ofChara by cytoplasmic calcium.In: Molecular and Cellular Aspects of Calcium in Plant Development. A.J. Trewavas, editor. pp. 415–416. Plenum, New York

    Google Scholar 

  63. Shiina, T., Tazawa, M. 1987. Ca2+-activated Cl, channel in plasmalemma ofNitellopsis obtusa.J. Membrane Biol. 99:137–146

    Google Scholar 

  64. Shiina, T., Tazawa, M. 1988 Ca2+-dependent Cl efflux in tonoplast-free cells ofNitellopsis obtusa.J. Membrane Biol. 106:135–139

    Google Scholar 

  65. Schreiber, U., Bilger, W. 1987. Rapid assessment of stress effects plant leaves by chlorophyll-fluorescence measurements.In: Plant Response to Stress, J.D. Tenhungen et al., editors. NATO ASI Series. Vol. G15, pp. 27–53. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  66. Schulz-DuBois, E.O., Rehberg, I. 1981. Structure function in lieu of correlation function.Appl. Phys. 24:323–329

    Google Scholar 

  67. Smith, J.R. 1983. The tonoplast impedance ofChara.J. Exp. Bot. 34:120–129

    Google Scholar 

  68. Smith, J.R., Walker, N.A. 1985. Effects of pH and light on the membrane conductance measured in the acid and basic zones ofChara.J. Membrane Biol. 83:193–205

    Google Scholar 

  69. Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  70. Spanswick, R.M. 1974. Evidence for an electrogenic ion pump inNitella translucens. II. Control of the light-stimulated component of the membrane potential.Biochim. Biophys. Acta 332:387–398

    Google Scholar 

  71. Steigner, W., Köhler, K., Simonis, W., Urbach, W. 1988. Transient cytoplasmic pH changes in correlation with opening of potassium channels inEremosphaera.J. Exp. Bot. 39:23–36

    Google Scholar 

  72. Stein, S., Hansen, U.-P. 1988. Involvement of photosynthesis in the action of temperature on plasmalemma transport inNitella.J. Membrane Biol. 103:149–158

    Google Scholar 

  73. Takeuchi, Y., Kishimoto, U. 1983. Changes of adenine, nucleotide levels inChara internodes during metabolic inhibition.Plant Cell Physiol. 24:1401–1409

    Google Scholar 

  74. Tazawa, M., Fujii, S., Kikuyama, M. 1979. Demonstration of light-induced potential inChara cells lacking tonoplast.Plant Cell Physiol. 20:451–460

    Google Scholar 

  75. Tazawa, M., Shimmen, T. 1980. Direct demonstration of the involvement of chloroplasts in the rapid light-induced potential change in tonoplast-free cells ofChara australis. Replacement ofChara chloroplasts with spinach chloroplasts.Plant Cell Physiol. 21:1527–1534

    Google Scholar 

  76. Tazawa, M., Shimmen, T., Mimura, T. 1986. Action spectrum of light-induced membrane hyperpolarization inEgeria densa.Plant Cell. Physiol. 27:163–168

    Google Scholar 

  77. Tester, M. 1988a. Pharmacology of K+ channels in the plasmalemma of the green algaChara corallina.J. Membrane Biol. 103:159–169

    Google Scholar 

  78. Tester, M. 1988b. Blockade of potassium channels in plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na+, Cs+.J. Membrane Biol. 105:77–85

    Google Scholar 

  79. Tester, M., Beilby, M.J., Shimmen, T. 1987. Electrical characteristics of the tonoplast ofChara corallina: A study using permeabilised cells.Plant Cell Physiol. 28:1555–1568

    Google Scholar 

  80. Thaler, M., Steigner, W., Köhler, K., Simonis, W., Urbach, W. 1987. Release of repetitive transient potentials and opening of potassium channels by barium inEremosphaera viridis.FEBS Lett. 219:351–354

    Google Scholar 

  81. Thiel, M., Keunecke, P., Hansen, U.P. 1984. The effects of light on the proton pump and on a leak inNitella.In: Membrane Transport in Plants. W.J. Cram, K. Janacek, R. Rybova, and K. Sigler, editors. pp. 61–62. Akademia. Prague

    Google Scholar 

  82. Tsutsui, I., Ohkawa, T., Nagai, R., Kishimoto, U. 1987. Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane: II. Effects of La3+, EGTA, and calmodulin antagonists on the current-voltage relation.J. Membrane Biol. 96:75–84

    Google Scholar 

  83. Vanselow, K.H., Dau, H., Hansen, U.P. 1988. Indication of transthylakoid proton-fluxes inAegopodium podagraria L. by light-induced changes of plasmalemma potential, chlorophyll fluorescence and light-scattering.Planta 176:351–361

    Google Scholar 

  84. Vanselow, K.H., Hansen, U.P. 1989. Möglichkeiten eines Biotests mit Hilfe der linearen Analyse der Kinetik der Signale aus dem photosynthetischen Apparat III. Off-line Analyse der Chlorophyll-Fluoreszenz-kinetik mit rauschigem Licht.In: Grundlagen und Anwendungsbereiche der Chlorophyll-Fluoreszenz D. Ernst, and C. Schmidt, editors.Dortmunder Beitr. Wasserforschung 37:96–116

  85. Vanselow, K.H., Kolbowski, J., Hansen, U.P. 1989a. Analysis of chlorophyll-fluorescence by means of noisy light.J. Exp. Bot. 40:247–256

    Google Scholar 

  86. Vanselow, K.H., Kolbowski, J., Hansen, U.P. 1989b. Further evidence for the relationship between light-induced changes of plasmalemma transport and of transthylakoid proton uptake.J. Exp. Bot. 40:239–245

    Google Scholar 

  87. Vergara, C., Moczydlowski, E., Latorre, R. 1984. Conduction, blockade and gating in a Ca2+-activated K+-channel incorporated into planar lipid membranes.Biophys. J. 45:73–76

    Google Scholar 

  88. Volkov, G.A. 1973. Bioelectric response of theNitella flexilis cell to illumination: A possible state of plasmalemma in a plant cell.Biochim. Biophys. Acta 314:83–92

    PubMed  Google Scholar 

  89. Vredenberg, W.J., Tonk, W.J.M. 1973. Photosynthetic energy control of electrogenic ion pump at the plasmalemma ofNitella translucens.Biochim. Biophys. Acta 298:354–368

    PubMed  Google Scholar 

  90. Yamagishi, A., Satoh, K., Katoh, S. 1978. Fluorescence induction in chloroplasts isolated from the green algaBryopsis maxima: III. A fluorescence transient indicating proton gradient across the thylakoid membrane.Plant Cell Physiol. 19:17–25

    Google Scholar 

  91. Zucker, R.S. 1981. Tetraethylammonium contains an impurity which alkalizes cytoplasm and reduces calcium buffering in neurones.Brain Res. 208:473–478

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vanselow, K.H., Hansen, U. Rapid effect of light on the K+ channel in the plasmalemma ofNitella . J. Membrain Biol. 110, 175–187 (1989). https://doi.org/10.1007/BF01869472

Download citation

Key Words

  • Ca2+ chlorophyll fluorescence
  • H+ pump
  • K+ channel
  • light
  • NAD-kinase
  • Nitella