The Journal of Membrane Biology

, Volume 110, Issue 2, pp 115–126 | Cite as

Effect of mercurial compounds on net water transport and intramembrane particle aggregates in ADH-treated frog urinary bladder

  • Cristina Ibarra
  • Pierre Ripoche
  • Jacques Bourguet


It has been suggested that during the oxytocin-induced hydrosmotic response, water crosses the luminal membrane of urinary bladder epithelium cells through membranespanning proteins. Although specific inhibitors of osmotic water transport have not been found, certain sulfhydryl reagents such as mercurial compounds may help to identify the proteins involved in this permeation process. We tested the effects ofp-chloromercuribenzene sulfonate (PCMBS) and of fluoresceinmercuric acetate (FMA) on the net water flux, the microtubule and microfilament structures of the frog urinary bladder, and the distribution of intramembrane particle aggregates in the luminal membrane.

We observed that: (i) 5mm PCMBS at pH 5 and 0.5mm FMA at pH 8 added to the mucosal bath at the maximum of the response to oxytocin partially inhibited the net water flux. Inhibition then increased progressively when the preparation was repeatedly or continuously stimulated, until it reached a maximal inhibition at 120 min. This inhibition was not reversed even when cystein was added in the mucosal bath. PCMBS and FMA effects were also observed when cyclic AMP (3′,5′ cyclic adenosine monophosphate) was used to increase water permeability. (ii) PCMBS mucosal pretreatment did not modify the basal water flux but potentiated the inhibitory effect of PCMBS or FMA on the hydrosmotic response to oxytocin. (iii) Microtubule and microfilament network, visualized in target cells by immunofluorescence, was not affected by PCMBS. (iv) The maximal PCMBS or FMA inhibition was not associated with a reduction of aggregate surface area in the apical membrane.

The persistence of the intramembrane particle aggregates associated with the oxytocin-induced hydrosmotic response during the net water flux inhibition by PCMBS, suggests that the PCMBS effect occurs possibly at the level of sulfhydryl groups of the water channel itself.

Key Words

water transport SH reagents PCMBS amphibian urinary bladder oxytocin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adragna, N., Bourguet, J. 1987. Effect of SH-group reagents on net water transport in frog urinary bladder.Membr. Biochem. 7:23–39PubMedGoogle Scholar
  2. Benga, G., Pop, V.I., Ionescu, M., Holme, R.P., Popescu, O. 1982. Irreversible inhibition of water transport in erythrocytes by fluoresceinmercuric acetate.Cell Biol. Int. Rep. 6:775–781PubMedGoogle Scholar
  3. Benga, G., Pop, V.I., Popescu, O., Ionescu, M., Mihele, V. 1983. Water exchange through erythrocyte membranes: Nuclear magnetic resonance studies of the effects of inhibitors and of chemical modification of human membranes.J. Membrane Biol. 76:129–137Google Scholar
  4. Benga, G., Popescu, O., Borza, V., Pop, V., Muresan, A., Mocsy, I., Brain, A., Wrigglesworth, J. 1986. Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport.Eur. J. Cell Biol. 41:252–262PubMedGoogle Scholar
  5. Bentley, P.J. 1964. Physiological properties of the isolated frog bladder in hyperosmotic solutions.Comp. Biochem. Physiol. 12:233–239PubMedGoogle Scholar
  6. Bourguet, J., Chevalier, J., Hugon, J.S. 1976. Alterations in membrane associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium.Biophys. J. 16:627–639PubMedGoogle Scholar
  7. Bourguet, J., Jard, S. 1964. Un dispositif automatique de mesure et d'enregistrement du flux net d'eau à travers la peau et la vessie des amphibiens.Biochim. Biophys. Acta 88:442–444PubMedGoogle Scholar
  8. Brady, R.J., Parsons, R.H., Coluccio, L.M. 1981. Nocodazole inhibition of the vasopressin-induced water permeability increase in toad urinary bladder.Biochim. Biophys. Acta 646:339–401Google Scholar
  9. Brown, P.A., Feinstein, M.B., Sha'afi, R.I. 1975. Membrane proteins related to water transport in human erythrocytes.Nature (London) 254:523–525Google Scholar
  10. Brown, D., Grosso, A., De Sousa, R. 1983. Correlation between water flow and intramembrane particle aggregates in toad epidermis.Am. J. Physiol. 254:334–342Google Scholar
  11. Cecil, R., McPhee, J.R. 1959. Sulfur chemistry of proteins.Adv. Protein Chem. 14:255–389PubMedGoogle Scholar
  12. Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associate particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129–140PubMedGoogle Scholar
  13. Chevalier, J., Parisi, M., Bourguet, J. 1983. The rate-limiting step in hydrosmotic response of frog urinary bladder.Cell Tissue Res. 228:345–355PubMedGoogle Scholar
  14. De Laat, S.W., Tertoolen, L.G.J., Bluemink, J.G. 1981. Quantitative analysis of the numerical and lateral distribution of intramembrane particles in freeze-fractured biological membranes.Eur. J. Cell Biol. 23:273–279PubMedGoogle Scholar
  15. Handler, J.S., Orloff, J. 1973. The mechanism of action of antidiuretic hormone.In: Handbook of Physiology. Sec. 8, Chap. 24. pp. 791–814. American Physiology Society, Washington, D.C.Google Scholar
  16. Hardy, M.A., Montoreano, R., Parisi, M. 1973. Colchicine dissociates the toad (Bufo arenarum) urinary bladder response to antidiuretic hormone and to serosal hypertonicity.Experientia 31:803–804Google Scholar
  17. Humbert, F., Montesano, R., Grosso, A., De Sousa, R.C., Orci, L. 1977. Particle aggregate in plasma and intracellular membranes of toad bladder (granular cell).Experientia 33:1364–1367PubMedGoogle Scholar
  18. Ibarra, C., Gobin, R., Ripoche, P., Bourguet, J. 1989. Effects of SH groups reagents on net water transport and intramembrane particle aggregates in ADH-treated frog urinary bladder.In the colloque: Water transepithelial transport. Mechanisms of action of antidiuretic hormone. 1988, Paris, France.Biol. Cell (in press) Google Scholar
  19. Kachadorian, W.A., Ellis, S.J., Muller, J. 1979. Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder.Am. J. Physiol. 236:F14-F20PubMedGoogle Scholar
  20. Kachadorian, W.A., Muller, J., Rudich, S.W., Di Scala, V.A. 1981. Relation of ADH effects to altered membrane fluidity in toad urinary bladder.Am. J. Physiol. 240:F63-F69PubMedGoogle Scholar
  21. Kachadorian, W.A., Wade, J.B., DiScala, V.A. 1975. Vasopressin-induced structural change in toad bladder luminal membrane.Science 190:67–69PubMedGoogle Scholar
  22. Klip, A., Grinstein, S., Biber, J., Semenza, G. 1980. Interaction of the sugar carrier of intestinal brush-border membranes with HgCl2.Biochim. Biophys. Acta 598:100–114PubMedGoogle Scholar
  23. Kunimoto, M., Shibata, K., Miura, T. 1987.p-Chloromercuribenzoate-induced dissociation of cytoskeletal proteins in red blood cells of rats.Biochim. Biophys. Acta 905:257–267PubMedGoogle Scholar
  24. Macey, R.I., Farmer, E.L. 1970. Inhibition of water and solute permeability in human red cells.Biochim. Biophys. Acta 211:104–106PubMedGoogle Scholar
  25. Muller, J., Kachadorian, W.A. 1984. Aggregate-carrying membranes during ADH stimulation and washout in toad bladder.Am. J. Physiol. 247:C90-C98PubMedGoogle Scholar
  26. Muller, J., Kachadorian, W.A., DiScala, V.A. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membrane in toad bladder epithelial cells.J. Cell Biol. 85:83–85PubMedGoogle Scholar
  27. Naccache, P., Sha'afi, R.I. 1974. Effects of PCMBS on water transfer across biological membranes.J. Cell. Physiol. 83:449–456PubMedGoogle Scholar
  28. Parisi, M., Bourguet, J. 1984. Effects of cellular acidification on ADH-induced intramembrane particle aggregates.Am. J. Physiol. 246:C157-C159PubMedGoogle Scholar
  29. Parisi, M., Pisam, M., Merot, J., Chevalier, J., Bourguet, J. 1985. The role of microtubules and microfilaments in the hydrosmotic response to antidiuretic hormone.Biochim. Biophys. Acta 817:333–342PubMedGoogle Scholar
  30. Pearl, M., Taylor, A. 1985. Role of the cytoskeleton in the control of transcellular water flow by vasopressin in amphibian urinary bladder.Biol. Cell 55:163–172PubMedGoogle Scholar
  31. Ralston, G.B., Crisp, E.A. 1981. The action of organic mercurials on the erythrocyte membrane.Biochim. Biophys. Acta 649:98–104PubMedGoogle Scholar
  32. Rasmussen, H., Schwartz, I.L., Schoessler, M.A., Hochster, G. 1960. Studies on the mechanisms of action of vasopressin.Proc. Natl. Acad. Sci. USA 46:1278–1287Google Scholar
  33. Solomon, A.K., Chasan, B., Dix, J.A., Lukacovic, M.F., Toon, M.R., Verkman, A.S. 1983. The aqueous pore in the red cell membrane: Band 3 as a channel for anions, cations, nonelectrolytes, and water.Ann. NY Acad. Sci. 414:97–124PubMedGoogle Scholar
  34. Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-chloromercuribenzene sulfonate.Biochim. Biophys. Acta 455:272–276PubMedGoogle Scholar
  35. Taylor, A., Mamelak, M., Reaven, E., Mafly, R. 1973. Vasopressin: Possible role of microtubules and microfilaments in its action.Science 181:347–350PubMedGoogle Scholar
  36. Turksen, N., Opas, M., Aubin, J.E., Kalnins, V.I. 1983. Microtubules, microfilaments and adhesion patterns differentiating chick retinal pigment epithelial (RPE) cells in vitro.Exp. Cell Res. 147:379–391PubMedGoogle Scholar
  37. Valenti, G., Chevalier, J., Hugon, J., Bourguet, J. 1987. Membrane structure and water permeability in renal-like epithelia.In: Comparative Physiology of Environmental Adaptations. Vol. 1, 8th ESCP Conf. Strasbourg (1986). K. Lahlou, editor. pp. 67–75. Karger, S. BaselGoogle Scholar
  38. Valenti, G., Hugon, J.S., Bourguet, J. 1988. To what extent is microtubular network involved in antidiuretic response?Am. J. Physiol. 255:F1098-F1106PubMedGoogle Scholar
  39. Vansteveninck, J., Weed, R.I., Rothstein, A. 1965. Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport.J. Gen. Physiol. 48:617–632PubMedGoogle Scholar
  40. Wade, J.B. 1978. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique: III. Location, structure and vasopressin dependence of intramembrane particle arrays.J. Membrane Biol. Special Issue:281–296Google Scholar
  41. Wade, J.B. 1980. Hormonal modulation of epithelial structure.In: Current Topics in Membranes and Transport. F. Bronner, and A. Kleinzeller, editors. pp. 123–147. Academic, New YorkGoogle Scholar
  42. Wade, J.B., Kachadorian, W.A., DiScala, V.A. 1977. Freeze-fracture electron microscopy: Relationship of membrane structural features to transport physiology.Am. J. Physiol. 232:F77-F83PubMedGoogle Scholar
  43. Wade, J.B., Stetson, D.L., Lewis, J.A. 1981. ADH action: Evidence for a membrane shuttle mechanism.Ann. NY Acad. Sci. 372:106–117PubMedGoogle Scholar
  44. Whittembury, G., Carpi Medina, P., Gonzalez, E., Linares, H. 1984. Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules.Biochim. Biophys. Acta 775:365–373PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Cristina Ibarra
    • 1
  • Pierre Ripoche
    • 1
  • Jacques Bourguet
    • 1
  1. 1.Biomembranes, Service de Biologie Cellulaire, Département de BiologieCentre d'Etudes Nucléaires de SaclayGif-sur-YvetteFrance

Personalised recommendations