The Journal of Membrane Biology

, Volume 97, Issue 2, pp 107–115 | Cite as

Complementarity of particles and pits in freeze-fractured hepatic and cardiac gap junctions

  • Ann M. G. L. De Mazière
  • Dietrich W. Scheuermann
  • Philip A. P. M. Aertgeerts


Particles and pits of freeze-fractured gap junctions are considered as complementary structures despite the frequent observations of more regular and closer spacings of pits, ascribed to plastic deformation of particle arrays. Recently, however, the noncomplementarity of pits and particles in Purkinje fibers has been reported. To ascertain the relationship between both structures, gap junctions from fixed, cryoprotected liver and myocardium were investigated using spacing and density measurements and complementary replicas.

In hepatocyte gap junctions, the center-to-center distances (mean±sd) among pits, 9.57±1.49 nm, and particles, 9.70±1.77 nm, are not significantly different. Density determinations yielded a slightly higher value for the pits, (11,510±830)/μm2, than for the particles, (11,230±950)/μm2. In the myocardium, the spacing of the regularly arrayed pits, 9.55±1.33 nm barely exceeds the value of 9.44±1.62 nm for the particles, which show some clustering. However, the packing density for the pits, (10,090±740)/μm2, appears a little higher than that of the particles (9,890±920)/μm2. As density and spacing measurements provided no decisive answers, the positions of individual pits and particles of complementary junctional faces were recorded on transparent sheets and compared. In this fashion, a one-to-one correspondence between particles and pits could be established, while small discrepancies may be attributed to plastic deformation. Moreover, the collinearity of pits and particles may be suggested by the observation of a platinum grain in the center of many pits.

Key Words

gap junctions complementary replicas plastic deformation freeze-fracture intramembranous particles liver myocardium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aertgeerts, P., De Mazière, A.M.G.L., Scheuermann, D.W. 1986. Gap junctional reorganization in hypoxic rat heart.Verh. Anat. Ges. 80:541–542Google Scholar
  2. Baldwin, K.M. 1979. Cardiac gap junction configuration after an uncoupling treatment as a function of time.J. Cell. Biol. 82:66–75Google Scholar
  3. Caspar, D.L.D., Goodenough, D.A., Makowski, L., Phillips, W.C. 1977. Gap junction structures I. Correlated electron microscopy and X-ray diffraction.J. Cell. Biol. 74:605–628Google Scholar
  4. Chalcroft, J.P., Bullivant, S. 1970. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture.J. Cell Biol. 47:49–60Google Scholar
  5. Délèze, J., Hervé, J.C. 1983. Effect of several uncouplers of cell-to-cell communication on gap junction morphology in mammalian heart.J. Membrane Biol. 74:203–215Google Scholar
  6. De Mazière, A.M.G.L., Aertgeerts, P., Scheuermann, D.W. 1985. A modified cleansing procedure to obtain large freeze-fracture replicas.J. Microsc. (Oxford) 137:185–188Google Scholar
  7. Dermietzel, R., Leibstein, A., Frixen, U., Janssen-Timmen, U., Traub, O., Willecke, K. 1984. Gap junctions in several tissues share antigenic determinants with liver gap junctions.EMBO J. 3:2261–2270Google Scholar
  8. Fujimoto, K., Ogawa, K.S., Ogawa, K. 1984. Direct visualization of the hydrophilic channel in the gap junction under an electron microscope using alkali-metal ions.Acta Histochem. Cytochem. 17:453–456Google Scholar
  9. Goodenough, D.A. 1975. Methods for the isolation and structural characterization of hepatocyte gap junctions.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 3, pp. 51–80 Plenum, New YorkGoogle Scholar
  10. Goodenough, D.A., Revel, J.P. 1970. A fine structural analysis of intercellular junctions in the mouse liver.J. Cell Biol. 45:272–290Google Scholar
  11. Green, C.R., Severs, N.J. 1984. Gap junction connexon configuration in rapidly frozen myocardium and isolated intercalated disks.J. Cell Biol. 99:453–463Google Scholar
  12. Gross, H., Bas, E., Moor, H. 1978. Freeze-fracturing in ultrahigh vacuum at −196°C.J. Cell Biol. 76:712–728Google Scholar
  13. Gross, H., Moor, H. 1978. Decoration of specific sites on freeze-fractured membranes.In: Electron Microscopy 1978. J.M. Sturgess, editor. Vol. 2, pp. 140–141. Microscopical Society of Canada, TorontoGoogle Scholar
  14. Gruijters, W.T.M., Bullivant, S. 1986. Freeze-fracturing at defined temperatures provides information on temperature rise during fracture, and on membrane complementarity.J. Microsc. (Oxford) 141:291–301Google Scholar
  15. Hanna, R.B., Reese, T.S., Ornberg, R.L., Spray, D.C., Bennett, M.V.L. 1981. Fresh frozen gap junctions: Resolution of structural detail in the coupled and uncoupled states.J. Cell Biol. 91:125aGoogle Scholar
  16. Hertzberg, E.L., Gilula, N.B. 1979. Isolation and characterization of gap junctions from rat liver.J. Biol. Chem. 254:2138–2147Google Scholar
  17. Heuser, J.E., Reese, T.S., Landis, D.M.D. 1976. Preservation of synaptic structure by rapid freezing.Cold Spring Harbor Symp. Quant. Biol. 40:17–24Google Scholar
  18. Hirokawa, N., Heuser, J. 1982. The inside and outside of gapjunction membranes visualized by deep etching.Cell 30:395–406Google Scholar
  19. Kordylewski, L., Page, E. 1985. Are gap junctional pits and particles complementary structures?Biophys. J. 47:506aGoogle Scholar
  20. Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913Google Scholar
  21. Makowski, L., Caspar, D.L.D., Phillips, W.C., Goodenough, D.A. 1977. Gap junction structures. II., Analysis of the X-ray diffraction data.J. Cell Biol. 74:629–645Google Scholar
  22. Meda, P., Findlay, I., Kolod, E., Orci, L., Petersen, O.H. 1983. Short and reversible uncoupling evokes little change in the gap junctions of pancreatic acinar cells.J. Ultrastruct. Res. 83:69–84Google Scholar
  23. Nicholson, B.J., Gros, D.B., Kent, S.B.H., Hood, L.E., Revel, J.-P. 1985. TheM r28,000 gap junction proteins from rat heart and liver are different but related.J. Biol. Chem. 260:6514–6517Google Scholar
  24. Page, E., Karrison, T., Upshaw-Earley, J. 1983. Freeze-fractured cardiac gap junctions: Structural analysis by three methods.Am. J. Physiol. 244:H525-H539Google Scholar
  25. Page, E., Upshaw-Earley, J. 1980. Gap junctional particle distributions in rat ventricle.Fed. Proc. 39:298Google Scholar
  26. Peracchia, C. 1977. Gap junctions: Structural changes after uncoupling procedures.J. Cell Biol. 72:628–641Google Scholar
  27. Peracchia, C. 1980. Structural correlates of gap junction permeation.Int. Rev. Cytol. 66:81–146Google Scholar
  28. Raviola, E., Goodenough, D.A., Raviola, G. 1980. Structure of rapidly frozen gap junctions.J. Cell Biol. 87:273–279Google Scholar
  29. Revel, J.-P., Nicholson, B.J., Yancey, S.B. 1984. Molecular organization of gap junctions.Fed. Proc. 43:2672–2677Google Scholar
  30. Scheuermann, D.W., De Mazière, A., De Groodt-Lasseel M.H.A., Aertgeerts, P. 1984. Cardiac gap junction configuration after ischemia.Verh. Anat. Ges. 78:183–184Google Scholar
  31. Severs, N.J. 1985. Intercellular junctions and the cardiac intercalated disk.In: Advances in Myocardiology. P. Harris and P.A. Poole-Wilson, editors. Vol. 5, pp. 223–242. Plenum, New YorkGoogle Scholar
  32. Shibata, Y., Manjunath, C.K., Page, E. 1985. Differences between cytoplasmic surfaces of deep-etched heart and liver gap junctions.Am. J. Physiol. 249:H690-H693Google Scholar
  33. Sikerwar, S., Malhotra, S. 1981. Structural correlates of glutaraldehyde induced uncoupling in mouse liver gap junctions.Eur. J. Cell Biol. 25:319–323Google Scholar
  34. Sleytr, U.B., Robards, A.W. 1977. Plastic deformation during freeze-cleavage: A review.J. Microsc. (Oxford) 110:1–25Google Scholar
  35. Steere, R.L., Sommer, J.R. 1972. Stereo ultrastructure of nexus faces exposed by freeze-fracturing.J. Microsc. (Paris) 15:205–218Google Scholar
  36. Ting-Beall, H.P., Burgess, F.M., Robertson, J.D. 1986. Particles and pits matched in native membranes.J. Microsc. (Oxford) 142:311–316Google Scholar
  37. Winkler, H., Wildhaber, I., Gross, H. 1985. Decoration effects on the surface of a regular protein layer.Ultramicroscopy 16:331–339Google Scholar
  38. Zampighi, G., Corless, J.M., Robertson, J.D. 1980. On gap junction structure.J. Cell Biol. 86:190–198Google Scholar

Copyright information

© Springer-Verlag New York Inc 1987

Authors and Affiliations

  • Ann M. G. L. De Mazière
    • 1
  • Dietrich W. Scheuermann
    • 1
  • Philip A. P. M. Aertgeerts
    • 1
  1. 1.Institute of Histology and Microscopic AnatomyUniversity of AntwerpAntwerpBelgium

Personalised recommendations