The Journal of Membrane Biology

, Volume 31, Issue 1, pp 301–315 | Cite as

Cholesterol stimulation of penetration of unilamellar liposomes by hydrophobic compounds

  • Edward F. LaBelle
  • Efraim Racker
Article

Summary

The incorporation of cholesterol into unilamellar liposomes greatly increased the transmembranous movement of hydrophobic ionophores such as nigericin. In reconstituted liposomes containing rhodopsin as the only protein, the presence of cholesterol lowers by 10-fold or more the amount of nigericin required to eliminate the light-driven proton gradient. These effects are seen both above and below the transition temperature of the phospholipid used for reconstitution.

Cholesterol similarly increases the ability of A-23187, 1799, or NH4SCN to collapse the proton gradient of bacteriorhodopsin vesicles. Cholesterol also lowers the concentration of nigericin or valinomycin required for a rapid translocation of Rb+ into protein-free liposomes. It also lowers the concentration of A-23187 required for the release of Ca45 trapped in protein-free liposomes. In contrast to these observations and in confirmation of previous findings, we observed that cholesterol decreased the permeability of liposomes for glucose. Thus the effects of cholesterol on the permeability of the membrane vary with the chemical nature of the permeating compounds. We have also confirmed that in multilamellar liposomes cholesterol decreases the permeability of Rb+ in the presence of valinomycin. It therefore appears that the effect of cholesterol changes with the size and structural features of the model membranes.

Keywords

Cholesterol Lecithin Valinomycin Nigericin NH4SCN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakker, E.P., Van DenHeuvel, E.J., Weichmann, A.H.C.A., Van Dam, K. 1973. A comparison between the effectiveness of uncouplers of oxidative phosphorylation in mitochondrial and in different artificial membrane systems.Biochim. Biophys. Acta 292:78PubMedCrossRefGoogle Scholar
  2. 2.
    Bruckdorfer, K.R., Demel, R.A., DeGier, J., Van Deenen, L.L.M. 1969. The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes.Biochim. Biophys. Acta 183:334PubMedCrossRefGoogle Scholar
  3. 3.
    Darke, A., Finer, E.G., Flook, A.G., Phillips, M.C. 1972. Nuclear magnetic resonance study of lecithin-cholesterol interactions.J. Mol. Biol. 63:265PubMedCrossRefGoogle Scholar
  4. 4.
    DeGier, J., Haest, C.W.M., Mandersloot, J.G., Van Deenen, L.L.M. 1970. Valinomycin-induced permeation of86Rb+ of liposomes with varying composition through the bilayers.Biochim. Biophys. Acta 211:373CrossRefGoogle Scholar
  5. 5.
    DeGier, J., Mandersloot, J.G., Van Deenen, L.L.M. 1968. Lipid composition and permeability of liposomes.Biochim. Biophys. Acta 150:666CrossRefGoogle Scholar
  6. 6.
    DeGier, J., Mandersloot, J.G., Van Deenen, L.L.M. 1969. The role of cholesterol in lipid membranes.Biochim. Biophys. Acta 173:143CrossRefGoogle Scholar
  7. 7.
    DeKruyff, B., DeGreef, W.J., Van Eyk, R.V.W., Demel, R.A., Van Deenen, L.L.M. 1973. The effect of different fatty acid and sterol composition on the erythritol flux through the cell membranes ofAcholeplasma laidlawii.Biochim. Biophys. Acta 298:479CrossRefGoogle Scholar
  8. 8.
    DeKruyff, B., Demel, R.A., Van Deenen, L.L.M. 1972. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intactAcholeplasma laidlawii cell membranes and derived liposomes.Biochim. Biophys. Acta 255:331CrossRefGoogle Scholar
  9. 9.
    Demel, R.A., Bruckdorfer, K.R., Van Deenen, L.L.M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol, and Rb+.Biochim. Biophys. Acta 255:321PubMedCrossRefGoogle Scholar
  10. 10.
    Demel, R.A., Geurts Van Kessel, W.S.M., Van Deenen, L.L.M. 1972. The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol.Biochim. Biophys. Acta 266:26CrossRefGoogle Scholar
  11. 11.
    Demel, R.A., Kinsky, S.C., Kinsky, C.B., Van Deenen, L.L.M. 1968. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins.Biochim. Biophys. Acta 150:655PubMedCrossRefGoogle Scholar
  12. 12.
    Gasko, O.D., Knowles, A.F., Shertzer, H.G., Suolinna, E.-M., Racker, E. 1976. The use of ion-exchange resins for studying ion transport in biological systems.Anal. Biochem. 72:57PubMedCrossRefGoogle Scholar
  13. 13.
    Gottfried, E.L., Rapport, M.M. 1962. The biochemistry of plasmalogens.J. Biol. Chem. 237:329PubMedGoogle Scholar
  14. 14.
    Hinkle, P., Kasahara, M. 1976. Reconstitution ofd-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes.Proc. Nat. Acad. Sci. USA 73:396PubMedCrossRefGoogle Scholar
  15. 15.
    Hubbell, W.L., McConnell, H.M. 1968. Spin-label studies of the excitable membranes of nerve and muscle.Proc. Nat. Acad. Sci. USA 61:12PubMedCrossRefGoogle Scholar
  16. 16.
    Hubbell, W.L., McConnell, H.M. 1969. Orientation and motion of amphiphilic spin labels in membranes.Proc. Nat. Acad. Sci. USA 64:20PubMedCrossRefGoogle Scholar
  17. 17.
    Inesi, G., Millman, M., Eletr, S. 1973. Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes.J. Mol. Biol. 81:483PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue, K. 1974. Permeability properties of liposomes prepared from dipalmitoyl lecithin, dimyristoyl lecithin, egg lecithin, rat liver lecithin, and beef brain sphingomyelin.Biochim. Biophys. Acta 339:390PubMedCrossRefGoogle Scholar
  19. 19.
    Kagawa, Y., Racker, E. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing32Pi-adenosine triphosphate exchange.J. Biol. Chem. 246:5477Google Scholar
  20. 20.
    Kanner, B.I., Racker, E. 1975. Light-dependent proton and rubidium translocation in membrane vesicles fromHalobacterium halobium.Biochem. Biophys. Res. Commun. 64:1054PubMedCrossRefGoogle Scholar
  21. 21.
    Kimelberg, H.K., Papahadjopoulos, D. 1974. Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na++K+)-stimulated adenosine triphosphatase.J. Biol. Chem. 249:1071PubMedGoogle Scholar
  22. 22.
    Kroes, J., Ostwald, R. 1971. Erythrocyte membranes—effect of increased cholesterol content on permeability.Biochim. Biophys. Acta 249:647PubMedCrossRefGoogle Scholar
  23. 23.
    Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins, and biological membranes.Chem. Phys. Lip. 3:304CrossRefGoogle Scholar
  24. 24.
    Ladbrooke, B.D., Williams, R.M., Chapman, D. 1968. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and Xray-diffraction.Biochim. Biophys. Acta 150:333PubMedCrossRefGoogle Scholar
  25. 25.
    Lelievre, J., Rich, G.T. 1973. The permeability of lipid membranes to non-electrolytes.Biochim. Biophys. Acta 298:15PubMedCrossRefGoogle Scholar
  26. 26.
    Linden, C.D., Wright, K.L., McConnell, H.M., Fox, C.F. 1973. Lateral phase separations in membrane lipids and the mechanism of sugar transport inEscherichia coli.Proc. Nat. Acad. Sci. USA 70:2271PubMedCrossRefGoogle Scholar
  27. 27.
    McElhaney, R.N., DeGier, J., VanderNeut-Kok, E.C.M. 1973. The effect of alterations in fatty acid composition and cholesterol content on the non-electrolyte permeability ofAcholeplasma laidlawii B cells and derived liposomes.Biochim. Biophys. Acta 298:500PubMedCrossRefGoogle Scholar
  28. 28.
    Newman, G.C., Huang, C. 1975. Structural studies on phosphatidylcholine-cholesterol mixed vesicles.Biochemistry 14:3363PubMedCrossRefGoogle Scholar
  29. 29.
    Oldfield, E., Chapman, D. 1971. Effect of cholesterol and cholesterol derivatives on hydrocarbon chain mobility in lipids.Biochem. Biophys. Res. Commun. 43:610PubMedCrossRefGoogle Scholar
  30. 30.
    Oldfield, E., Chapman, D. 1972. Molecular dynamics of cerebroside-cholesterol and sphingomyelin-cholesterol interactions.FEBS Letters 21:303PubMedCrossRefGoogle Scholar
  31. 31.
    Oldfield, E., Chapman, D. 1972. Dynamics of lipids in membranes: Heterogeneity and the role of cholesterol.FEBS Letters 23:285PubMedCrossRefGoogle Scholar
  32. 32.
    Overath, P., Trauble, H. 1973. Phase transitions in cells, membranes, and lipids ofEscherichia coli. Detection by fluorescent probes, light scattering and dilatometry.Biochemistry 12:2625PubMedCrossRefGoogle Scholar
  33. 33.
    Papahadjopoulos, D., Jacobson, K., Nir, S., Isac, T. 1973. Phase transitions in phospholipid vesicles: Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol.Biochim. Biophys. Acta 311:330PubMedCrossRefGoogle Scholar
  34. 34.
    Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes: Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624PubMedCrossRefGoogle Scholar
  35. 35.
    Pfeiffer, D.R., Lardy, H.A. 1976. Ionophore A-23187: The effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A-23187.Biochemistry 15:935PubMedCrossRefGoogle Scholar
  36. 36.
    Racker, E. 1973. A new procedure for the reconstitution of biologically active phospholipid vesicles.Biochem. Biophys. Res. Commun. 55:224PubMedCrossRefGoogle Scholar
  37. 37.
    Racker, E., Hinkle, P.C. 1974. Effect of temperature on the function of a proton pump.J. Membrane Biol. 17:181CrossRefGoogle Scholar
  38. 38.
    Racker, E., Knowles, A.F., Eytan, E. 1975. Resolution and reconstitution of iontransport systems.Ann. N.Y. Acad. Sci. 264:17PubMedCrossRefGoogle Scholar
  39. 39.
    Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662PubMedGoogle Scholar
  40. 40.
    Rottem, S., Cirillo, V.P., DeKruyff, B., Shinitzky, M., Razin, S. 1973. Cholesterol in mycoplasma membranes.Biochim. Biophys. Acta 323:509PubMedCrossRefGoogle Scholar
  41. 41.
    Schmid, H.H.O., Takahashi, T. 1968. The Alk-1-enyl ether and alkyl ether lipids of bovine heart muscle.Biochim. Biophys. Acta 164:141PubMedCrossRefGoogle Scholar
  42. 42.
    Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346CrossRefGoogle Scholar
  43. 43.
    Tsong, T.Y. 1975. Transport of 8-anilino-1-naphthalene sulfonate as a probe of the effect of cholesterol on the phospholipid bilayer structures.Biochemistry 14:5415CrossRefGoogle Scholar
  44. 44.
    Yeagle, P.L., Hutton, W.C., Huang, C., Martin, R.B. 1975. Headgroup conformation and lipid-cholesterol association in phosphatidylcholine vesicles: A31P {1H} nuclear Overhauser effect study.Proc. Nat. Acad. Sci. USA 72:3477PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1977

Authors and Affiliations

  • Edward F. LaBelle
    • 1
  • Efraim Racker
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell BiologyCornell UniversityIthaca

Personalised recommendations