Skip to main content
Log in

A protonmotive force as the source of energy for galactoside transport in energy depletedEscherichia Coli

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

An artificially produced electrochemical potential difference for protons (protonmotive force) provided the energy for the transport of galactosides inEscherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf, K., Harold, F. M., Simoni, R. D. 1974. Impairment and restoration of the energized state in membrane vesicles of a mutant ofEscherichia coli lacking adenosine triphosphatase.J. Biol. Chem. 249:4587

    PubMed  CAS  Google Scholar 

  • Berger, E. A. 1973. Different mechanisms of energy coupling for the active transport of proline and glutamine inEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1514

    Article  PubMed  CAS  Google Scholar 

  • Berger, E. A., Heppel, L. A. 1974. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases ofEscherichia coli.J. Biol. Chem. 249:7747

    PubMed  CAS  Google Scholar 

  • Butlin, J. D., Cox, G. B., Gibson, F. 1971. Oxidative phosphorylation inEscherichia coli K12: Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase.Biochem. J. 124:75

    PubMed  CAS  Google Scholar 

  • Cohen, G. N., Rickenberg, H. V. 1956. Concentration specifique reversible des amino acides chezEscherichia coli.Ann. Inst. Pasteur, Paris 91:693

    CAS  Google Scholar 

  • Davila, H. V., Salzberg, B. M., Cohen, L. B., Waggoner, A. S. 1973. A large change in axon fluorescence that provides a promising method for measuring a membrane potential.Nature New Biol. 241:159

    PubMed  CAS  Google Scholar 

  • Flagg, J. L., Wilson, T. H. 1976. Galactoside accumulation byEscherichia coli. driven by a pH gradient.J. Bacteriol. 125:1235

    PubMed  CAS  Google Scholar 

  • Fox, C. F., Wilson, G. 1968. The role of a phosphoenolpyruvate-dependent kinase system in β-glucoside catabolism inEscherichia coli.Proc. Nat. Acad. Sci. USA 59:988

    Article  PubMed  CAS  Google Scholar 

  • Grinius, L., Slušnyte, R., Griniuviené, B. 1975. ATP synthesis driven by protonmotive force imposed acrossEscherichia coli cell membranes.FEBS Lett. 57:290

    Article  PubMed  CAS  Google Scholar 

  • Griniuviené, B., Chmieliauskaite, V., Melvydas, V., Dzhega, P., Grinius, L. 1975. Conversion ofEscherichia coli cell-produced metabolic energy into electric form.Bioenergetics 7:17

    Article  Google Scholar 

  • Harold, F. M., Altendorf, K. 1974. Cation transport in bacteria: K+, Na+ and H+.In: Current Topics in Membranes and Transport. F. Bronner and A. A. Kleinzeller, editors. Vol. 5., p. 1. Academic Press, New York

    Google Scholar 

  • Harold, F. M., Pavlasova, E., Baarda, J. R. 1970. A transmembrane pH gradient inStreptococcus faecalis: Origin, and dissipation by proton conductors and N, N′-dicyclohexylcarbodiimide.Biochim. Biophys. Acta 196:235

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Altendorf, K., Harold, F. M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Altendorf, K., Harold, F. M. 1974. Energy coupling in membrane vesicles ofEscherichia coli. I. Accumulation of metabolites in response to an electrical potential.J. Biol. Chem. 249:2939

    PubMed  CAS  Google Scholar 

  • Hoffman, J. F., Laris, P. C. 1974. Determination of membrane potentials in human andamphiuma red blood cells by means of a fluorescent probe.J. Physiol. 239:519

    PubMed  CAS  Google Scholar 

  • Kaback, H. R. 1971. Bacterial membranes.In: Methods in Enzymology. W. B. Jakoby, editor. Vol. 22, p. 99. Academic Press, New York

    Google Scholar 

  • Kashket, E. R., Wilson, T. H. 1972. Galactoside accumulation associated with ion movements inStreptococcus lactis.Biochem. Biophys. Res. Commun. 49:615

    Article  PubMed  CAS  Google Scholar 

  • Kashket, E. R., Wilson, T. H. 1973. Proton-coupled accumulation of galactoside inStreptococcus lactis 7962.Proc. Nat. Acad. Sci. USA 79:2866

    Article  Google Scholar 

  • Kashket, E. R., Wilson, T. H. 1974. Protonmotive force in fermentingStreptococcus lactis 7962 in relation to sugar accumulation.Biochem. Biophys. Res. Commun. 59:879

    Article  PubMed  CAS  Google Scholar 

  • Kashket, E. P., Wong, P. T. S. 1969. The intracellular pH ofEscherichia coli.Biochim. Biophys. Acta 193:212

    Article  PubMed  CAS  Google Scholar 

  • Larris, P. C., Pershadsingh, H. A. 1974. Estimations of membrane potentials inStreptococcus faecalis by means of a fluorescent probe.Biochem. Biophys. Res. Commun. 57:620

    Article  Google Scholar 

  • Maloney, P. C., Kashket, E. R., Wilson, T. H. 1975. A protonmotive force drives ATP synthesis in bacteria.Proc. Nat. Acad. Sci. USA 71:3896

    Article  Google Scholar 

  • Maloney, P. C., Kashket, E. R., Wilson, T. H. 1975. Methods for studying transport in bacteria.In: Methods in Membrane Biology. E. D. Korn, editor. Vol. 5, p. 1. Plenum Press, New York

    Google Scholar 

  • Maloney, P. C., Wilson, T. H. 1975. ATP synthesis driven by a protonmotive force inStreptococcus lactis.J. Membrane Biol. 25:285

    Article  Google Scholar 

  • Mitchell, P. 1963. Molecule, group and electron translocation through natural membranes.Biochem. Soc. Symp. 22:142

    Google Scholar 

  • Pavlasova, E., Harold, F. M. 1968. Energy coupling in the transport of β-galactosides byEscherichia coli: Effect of proton conductors.J. Bacteriol. 98:198

    Google Scholar 

  • Roos, A. 1965. Intracellular pH and intracellular buffering power of the cat brain.Am. J. Physiol. 209:1233

    PubMed  CAS  Google Scholar 

  • Sâsárman, A., Surdeanu, M., Horodniceanu, T. 1968. Locus determining the synthesis of γ-aminolevulinic acid inEscherichia coli K-12.J. Bacteriol. 96:1882

    PubMed  Google Scholar 

  • Schuldiner, S., Kaback, H. R. 1975. Membrane potential and active transport in membrane vesicles fromEscherichia coli.Biochemistry 14:5451

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., Postma, P. W. 1975. The energetics of bacterial active transport.Annu. Rev. Biochem. 44:523

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., Shallenberger, M. K. 1972. Coupling of energy to active transport of amino acids inEscherichia coli.Proc. Nat. Acad. Sci. USA 69:2663

    Article  PubMed  CAS  Google Scholar 

  • Singh, A. P., Bragg, P. D. 1974. Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficientEscherichia coli.Biochem. Biophys. Res. Commun. 41:655

    Google Scholar 

  • Tsuchiya, T., Rosen, B. P. 1976. ATP synthesis by an artificial proton gradient in right-side-out membrane vesicles ofEscherichia coli.Biochem. Biophys. Res. Commun. 68:497

    Article  PubMed  CAS  Google Scholar 

  • West, I. C. 1970. Lactose transport coupled to proton movements inEscherichia coli.Biochem. Biophys. Res. Commun. 41:655

    Article  PubMed  CAS  Google Scholar 

  • West, I. C., Mitchell, P. 1972. Proton coupled β-galactoside translocation in non-metabolizingEscherichia coli.J. Bioenergetics. 3:445

    Article  CAS  Google Scholar 

  • West, I. C., Mitchell, P. 1973. Stoichiometry of lactose-H+ symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587

    PubMed  CAS  Google Scholar 

  • Wilson, D. M., Alderete, J. F., Maloney, P. C., Wilson, T. H. 1976. A protonmotive force as the source of energy for adenosine 5′-triphosphate synthesis inEscherichia coli.J. Bacteriol. 126:327

    PubMed  CAS  Google Scholar 

  • Winkler, H. H., Wilson, T. H. 1966. The role of energy coupling in the transport of β-galactosides byEscherichia coli.J. Biol. Chem. 241:2200

    PubMed  CAS  Google Scholar 

  • Wood, J. M. 1975. Leucine transport inEscherichia coli: The resolution of multiple transport systems and their coupling to metabolic energy.J. Biol. Chem. 250:4477

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flagg, J.L., Wilson, T.H. A protonmotive force as the source of energy for galactoside transport in energy depletedEscherichia Coli . J. Membrain Biol. 31, 233–255 (1977). https://doi.org/10.1007/BF01869407

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869407

Keywords

Navigation