Skip to main content
Log in

Regional differences in K channels of abdominal and circumesophageal segments of the crayfish medial giant axon

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular recordings reveal that the membrane of the circumesophageal region of the medial giant axon of crayfish responds to replacement of Cl with propionate differently from that of the abdominal region of the same axon. The connective hyperpolarizes in the propionate saline, whereas the abdominal region undergoes the transient depolarization that is expected when a permeant anion (Cl) is replaced with an impermeant one (propionate). The hyperpolarization of the connectives is accompanied by an increased conductance, a decreased length constant, and an increase in threshold current for intracellular stimulation. These effects are specific for the connectives and for propionate. They do not occur on replacing Cl with other large anions, isethionate, methane sulfonate, or glucuronate. The effects of propionate are independent of Na or Ca and result from an increased K conductance. The hyperpolarization induced by propionate is increased in a K-free saline, where the resting potential (E M) is considerably positive to the emf of the K battery (E K). It is abolished in elevated K o whenE M=EK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, J.L., Levitan, H. 1975. Mitochondrial uncoupling agents: Effects on membrane permeability of molluscan neurons.J. Membrane Biol. 25:361

    Article  Google Scholar 

  • Cohen, B., Bennett, M.V.L., Grundfest, H. 1960. Rectification in skate electroplaques and its abolition by barium ions.Biol. Bull. 119:303

    Google Scholar 

  • Dudel, J., Rüdel, R. 1969. Voltage controlled contractions and current voltage relations of crayfish muscle fibers in chloride-free solutions.Pfluegers Arch. 308:291

    Article  CAS  Google Scholar 

  • Freemann, A.R., Reuben, J.P., Brandt, P.W., Grundfest, H. 1966. Osmometrically determined characteristics of the cell membrane of squid and lobster giant axons.J. Gen. Physiol. 50:423

    Article  Google Scholar 

  • Girardier, L., Reuben, J.P., Brandt, P.W., Grundfest, H. 1963. Evidence for anion permselective membrane in crayfish muscle fibers and its possible role in excitation-contraction coupling.J. Gen. Physiol. 47:189

    Article  PubMed  CAS  Google Scholar 

  • Grundfest, H. 1966. Comparative electrobiology of excitable membranes.In: Advances in Comparative Physiology and Biochemistry. O.E. Lowenstein, editor. Vol. 2, p. 1. Academic Press, New York

    Google Scholar 

  • Grundfest, H. 1967. The “anomalous” spikes ofAscaris esophageal cells.J. Gen. Physiol. 50:1955

    Article  PubMed  CAS  Google Scholar 

  • Grundfest, H. 1971. The varieties of excitable membranes.In: Biophysics and Physiology of Excitable Membranes. W.J. Adelman, Jr., editor. p. 477. Van Nostrand Reinhold, New York

    Google Scholar 

  • Grundfest, H. 1975. Physiology of electrogenic excitable membrane.In: The Nervous System, The Basic Neurosciences. D.B. Tower, editor. Vol. 1, p. 153. Raven Press, New York

    Google Scholar 

  • Grundfest, H., Yamagishi, S. 1972. Regional differences in anion permeability of crayfish medial giant axons.Biophys. Soc. Annu. Meet. Abstr. 16:118a

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1974. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell.J. Membrane Biol. 18:61

    Article  CAS  Google Scholar 

  • Hille, B., Bennett, M.V.L., Grundfest, H. 1965. Voltage clamp measurements of the Cl-conductance changes in skate electroplaques.Biol. Bull. 129:407

    Google Scholar 

  • Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. 148:127

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500

    PubMed  CAS  Google Scholar 

  • Motokizawa, F., Reuben, J.P., Grundfest, H. 1969. Ionic permeability of the inhibitory postsynaptic membrane of lobster muscle fibers.J. Gen. Physiol. 54:437

    Article  PubMed  CAS  Google Scholar 

  • Müller-Mohnssen, H. 1967. Stationärer negative Widerstand und Verstärkerfunktion des Ranvierschen Schnürrings. Institut für Biologie, München

    Google Scholar 

  • Nakamura, Y., Nakajima, S., Grundfest, H. 1965. Analysis of spike electrogenesis and depolarising K-inactivation in electroplaques ofElectrophorus electricus L.J. Gen. Physiol. 49:321

    Article  PubMed  CAS  Google Scholar 

  • Orentlicher, M., Ornstein, R.S. 1971. Influence of external cations on caffeine-induced tension: Calcium extrusion in crayfish muscle.J. Membrane Biol. 5:319

    Article  CAS  Google Scholar 

  • Reuben, J.P., Brandt, P.W., Girardier, L., Grundfest, H. 1967. Crayfish muscle: Permeability to Na induced by calcium depletion.Science 155:1263

    Article  PubMed  CAS  Google Scholar 

  • Reuben, J.P., Brandt, P.W., Grundfest, H. 1974. Regulation of myoplasmic calcium concentration in intact crayfish muscle fibers.J. Mechanochem. Cell Motil. 2:269

    PubMed  CAS  Google Scholar 

  • Reuben, J.P., Girardier, L., Grundfest, H. 1964. Water Transfer and cell structure in isolated crayfish muscle fibers.J. Gen. Physiol. 47:1141

    Article  PubMed  CAS  Google Scholar 

  • Reuben, J.P., Lopez, E., Brandt, P.W., Grundfest, H. 1963. Muscle: Volume changes in isolated single fibers.Science 142:246

    Article  Google Scholar 

  • Ruiz-Manresa, F. 1970. Electrogenesis of Eel Electroplaques. Conductance Components and Impedance Changes during Activity.Ph. D. Thesis, Columbia University, New York

    Google Scholar 

  • Shanes, A.M., Grundfest, H., Freygang, W.H. 1953. Low level impedance changes following the spike in the squid giant axon before and after treatment with “Veratrine” alkaloids.J. Gen. Physiol. 37:39

    Article  PubMed  CAS  Google Scholar 

  • Strickholm, A., Wallin, G. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.J. Gen. Physiol. 50:1929

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, A., Grundfest, H. 1961. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons.J. Gen. Physiol. 45:267

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi, S., Grundfest, H. 1971. Contributions of various ions to the resting and action potentials of crayfish medial giant axons.J. Membrane Biol. 5:345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamagishi, S., Grundfest, H. Regional differences in K channels of abdominal and circumesophageal segments of the crayfish medial giant axon. J. Membrain Biol. 31, 65–79 (1977). https://doi.org/10.1007/BF01869399

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869399

Keywords

Navigation