Skip to main content
Log in

Calcium-dependent sodium currents inParamecium: Mutational manipulations and effects of hyper- and depolarization

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The membrane ofParamecium generates a Ca-dependent Na current upon depolarization. There is, however, also a Na current upon hyperpolarization in this membrane. The second Na current was analyzed under voltage clamp and found to have properties identical to those of the first. Both currents could be carried by Na and Li ions and not by K, Cs or choline ion. They were eliminated by either EGTA injection into the cell or Ca removal from the bath. Both currents were eliminated by a single-gene mutation,fast-2, that had no effect on Ca currents. These findings strongly suggest that these two currents are through the same Ca-dependent Na conductance. A hyperpolarization-induced Ca current was also identified, which served to activate the second Na current. These observations support a model that theParamecium membrane has two Ca channels with different voltage dependencies and only one Na channel, which is elicited by a rise of the itternal free Ca2+ concentration. The function of the Ca-dependent Na conductance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldenhoff, J.B., Hofmeier, G., Lux, H.D., Swandulla, D. 1983. Stimulation of a sodium influx by cAMP inHelix neurons.Brain Res. 276:289–296.

    Article  PubMed  Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Ridgeway, E.B. 1971. Depolarization and calcium entry in squid giant axons.J. Physiol. (London) 218:709–755

    Google Scholar 

  • Brehm, P., Eckert, R., Tillotson, D. 1980. Calcium-mediated inactivation of calcium current inParamecium.J. Physiol. (London) 306:193–203

    Google Scholar 

  • Capovilla, M., Caretta, A., Cervetto, L., Torre, V. 1983. Ionoic movements through light-sensitive channels of toad rods.J. Physiol. (London) 343:295–310

    Google Scholar 

  • Colquhoun, D., Neher, E., Reuter, H., Stevens, C.F. 1981. Inward current channels activated by intracellular Ca in cultured cardiac cells.Nature (London) 294:752–754

    Article  Google Scholar 

  • Conner, J.A., Hockberger, P. 1984. A novel membrane sodium current induced by injection of cyclic nucleotides into gastropod neurones.J. Physiol. (London) 354:139–162

    Google Scholar 

  • Conner, J.A., Stevens, C.F. 1971. Prediction of repetitive firing behavior from voltage clamp data on an isolated neurone soma.J. Physiol. (London) 213:31–53

    Google Scholar 

  • Connolly, J.G., Kerkut, G.A. 1983. Ion regulation and membrane potential inTetrahymena andParamecium.Comp. Biochem. Physiol. 76A:1–16

    Article  Google Scholar 

  • Fesenko, E.E., Kolesnikov, S., Lyubarsky, A.L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment.Nature (London) 313:310–313

    Article  Google Scholar 

  • Hansma, H.G. 1979. Sodium uptake and membrane excitation inParamecium.J. Cell Biol. 81:374–381

    Article  PubMed  Google Scholar 

  • Hermann, A., Gorman, A.L.F. 1981. Effects of tetraethylammonium on potassium currents in a molluscan neurone.J. Gen. Physiol. 78:87–110

    Article  PubMed  Google Scholar 

  • Hinrichsen, R.D., Saimi, Y. 1984. A mutation that alters properties of the calcium channel inParamecium tetraurelia.J. Physiol. (London) 351:397–410

    Google Scholar 

  • Hinrichsen, R.D., Saimi, Y., Kung, C. 1984. Mutants with altered Ca2+-channel properties inParamecium tetraurelia: Isolation, characterization and genetic analysis.Genetics 108:545–558

    PubMed  Google Scholar 

  • Hodgkin, A.L., McNaughton, P.A., Nunn, B.J. 1985. The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods.J. Physiol. (London) 358:447–468

    Google Scholar 

  • Kung, C. 1971. Genic mutants with altered system of excitation inParamecium aurelia: I. Phenotypes of the behavioral mutants.Zeit. verg. Physiol. 71:142–164

    Google Scholar 

  • Kung, C., Chang, S.-Y., Satow, Y., Van Houten, J., Hansma, H.G. 1975. Genetic dissection of behavior inParamecium.Science 188:898–904

    PubMed  Google Scholar 

  • Kung, C., Saimi, Y. 1982. The physiological basis of taxes inParamecium.Annu. Rev. Physiol. 44:519–534

    PubMed  Google Scholar 

  • Machemer, H., Ogura, A. 1979. Ionic conductances of membranes in ciliated and deciliatedParamecium.J. Physiol. (London) 296:49–60

    Google Scholar 

  • Maruyama, Y., Petersen, O.H. 1982. Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini.Nature (London) 299:159–161

    Google Scholar 

  • Mathews, H.R., Torre, V., Lamb, T.D. 1985. Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods.Nature (London) 313:582–585

    Google Scholar 

  • Meves, H., Vogel, W. 1973. Calcium inward currents in internally perfused giant axons.J. Physiol. (London) 235:225–265

    Google Scholar 

  • Moczydlowski, E., Latorre, R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage-dependent Ca2+ binding reactions.J. Gen. Physiol. 83:511–542

    Google Scholar 

  • Saimi, Y., Hinrichsen, R.D., Forte, H., Kung, C. 1983. Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation inParamecium.Proc. Natl. Acad. Sci. USA 80:5112–5116

    PubMed  Google Scholar 

  • Saimi, Y., Kung, C. 1980. A Ca-induced Na+ current inParamecium.J. Exp. Biol. 88:305–325

    PubMed  Google Scholar 

  • Satow, Y., Kung, C. 1974. Genetic discussion of active electrogenesis inParamecium aurelia.Nature (London) 247:69–71

    Google Scholar 

  • Satow, Y., Kung, C. 1976. A mutant ofParamecium with increased relative resting potassium permeability.J. Neurobiol. 7:325–338

    PubMed  Google Scholar 

  • Sonneborn, T.M. 1975.Paramecium aurelia:In: Handbook of Genetics. Vol.II, pp. 469–594. R.C. King, editor. Plenum, New York

    Google Scholar 

  • Swandulla, D., Lux, H.D. 1984. Changes in ionic conductances induced by cAMP inHelix neurons.Brain Res. 305:115–122

    PubMed  Google Scholar 

  • Yau, K.-W., Nakatani, K. 1984. Cation selectivity of light-sensitive conductance in retinal rods.Nature (London) 309:352–354

    Google Scholar 

  • Yellen, G. 1982. Single Ca2+-activated nonselective cation channels in neuroroblastoma.Nature (London) 296:357–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saimi, Y. Calcium-dependent sodium currents inParamecium: Mutational manipulations and effects of hyper- and depolarization. J. Membrain Biol. 92, 227–236 (1986). https://doi.org/10.1007/BF01869391

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869391

Key Words

Navigation