The Journal of Membrane Biology

, Volume 114, Issue 1, pp 53–60 | Cite as

Comparative study of the effects of cromakalim (BRL 34915) and diazoxide on membrane potential, [Ca2+] i and ATP-sensitive potassium currents in insulin-secreting cells

  • M. J. Dunne
  • D. I. Yule
  • D. V. Gallacher
  • O. H. Petersen


Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of −62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 μm) and diazoxide (100 μm) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.

Key Words

patch-clamp fura-2 KATP channels [Ca2+]i insulin-secreting cell RINm5F cell diazoxide cromakalim (BRL 34915) tolbutamide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altszuler, N., Hampshire, J., Morarv, E. 1977. On the mechanism of diazoxide-induced hyperpolarisation.Diabetes 26: 931–935Google Scholar
  2. Ashcroft, F.M. 1988. Adenosine 5′-triphosphate sensitive potassium channels.Annu. Rev. Neurosci. 11: 97–118Google Scholar
  3. Ashcroft, F.M., Harrison, D.E., Ashcroft, S.J.H. 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic B-cells.Nature (London) 312: 446–448Google Scholar
  4. Ashcroft, F.M., Kakei, M., Kelly, R.P., Sutton, R. 1987. ATP-sensitive K+ channels in human isolated pancreatic B-cells.FEBS Lett. 215: 9–12Google Scholar
  5. Byerly, L., Hagiwara, S. 1982. Calcium currents in intracellularly perfused nerve cell bodies ofLimnea stagalis.J. Physiol. (London) 322: 503–528Google Scholar
  6. Cook, N.S. 1988. The pharmacology of potassium channels and their therapeutic potential.Trends Pharmacol. Sci. 9: 21–28Google Scholar
  7. Cook, D.L., Hales, C.N. 1984. Intracellular ATP directly blocks K+ channels in pancreatic B-cells.Nature (London) 311: 271–273Google Scholar
  8. Cook, N.S., Quast, U., Weir, S.W. 1988. In vitro and in vivo comparison of two K+ channel openers, diazoxide and BRL 34915.Pfluegers Arch. 411: R49Google Scholar
  9. Dunne, M.J. 1989. Protein phosphorylation is required for diazoxide to open ATP-sensitive potassium channels in insulin (RINm5F) secreting cells.FEBS Lett. 250: 262–266Google Scholar
  10. Dunne, M.J., Aspinall, R.J., Petersen, O.H. 1990. The effects of cromakalim on ATP-sensitive postassium channels in insulinsecreting cells.Br. J. Pharmacol. 99: 169–175Google Scholar
  11. Dunne, M.J., Bullett, M.J., Li, G., Wollheim, C.B., Petersen, O.H. 1989. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein.EMBO J. 8: 412–420Google Scholar
  12. Dunne, M.J., Findlay, I., Petersen, O.H. 1988a. Effects of pyridine nucleotides on the gating of ATP-sensitive potassium channels in insulin-secreting cells.J. Membrane Biol. 102: 205–216Google Scholar
  13. Dunne, M.J., Findlay, I., Petersen, O.H., Wollheim, C.B. 1986. ATP-sensitive K+ channels in an insulin-secreting cell line are inhibited byd-glyceraldehyde and activated by membrane permeabilization.J. Membrane Biol. 93: 271–279Google Scholar
  14. Dunne, M.J., Ilott, M.C., Petersen, O.H. 1987. Interactions of diazoxide, tolbutamide and ATP4− on nucleotide-dependent K+ channels in an insulin-secreting cell line.J. Membrane Biol. 99: 215–224Google Scholar
  15. Dunne, M.J., Petersen, O.H. 1989. Ion channels in insulin-secreting cells; their role in stimulus-secretion coupling.In: Epithelial Secretion of Water and Electrolytes. J.A. Young and P.Y.D. Wong, editors. Springer-Verlag, W. Germany(in press) Google Scholar
  16. Dunne, M.J., West-Jordan, J.A., Abraham, R.J., Edwards, R.T.H., Petersen, O.H. 1988b. The gating of nucleotide-sensitive K+ channels in insulin-secreting cells can be modulated by changes in the ratio ATP4−/ADP3− and by nonhydrolyzable derivatives of both ATP and ADP.J. Membrane Biol. 104: 165–172Google Scholar
  17. Escande, D., Thuringer, D., Leguern, S., Cavero, I. 1988. The potassium channel opener cromakalim (BRL 34915) activated ATP-dependent K+ channels in isolated cardiac myocytes.Biochem. Biophys. Res. Commun. 154: 620–625Google Scholar
  18. Faivre, J.-J., Findlay, I. 1989. Effects of tolbutamide, glibenclamide and diazoxide upon action potentials recorded from rat ventricular muscle.Biochim. Biophys. Acta. 984: 1–5Google Scholar
  19. Fenwick, E.M., Marty, A., Neher, E. 1982. Sodium and calcium channels in bovine chromaffin cells.J. Physiol (London) 331: 599–635Google Scholar
  20. Findlay, I., Dunne, M.J. 1986. ATP maintains ATP-inhibited K+ channels in an operational state.Pfluegers Arch. 407: 238–240Google Scholar
  21. Findlay, I., Dunne, M.J., Petersen, O.H. 1985. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells.J. Membrane Biol. 88: 165–172Google Scholar
  22. Grynkiewicz, G., Poenie, M., Tsien, R.Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties.J. Biol. Chem. 260: 3440–3450Google Scholar
  23. Halban, P.A., Praz, G.A., Wollheim, C.B. 1983. Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a pancreatic cell line (RINm5F).Biochem. J. 212: 439–443Google Scholar
  24. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recordings from cells and cell-free membrane patches.Pfluegers Arch. 391: 85–100Google Scholar
  25. Hamilton, T.C., Weir, S.W., Weston, A.H. 1986. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein.Br. J. Pharmacol. 88: 103–111Google Scholar
  26. Henquin, J.C. 1980. Tolbutamide stimulation and inhibition of insulin release: Studies of the underlying ionic mechanism in isolated rat islets.Diabetologia 18: 151–160Google Scholar
  27. Henquin, J.C., Charles, S., Nenquin, M., Mathat, F. 1982. Diazoxide and D600 inhibition of insulin release. Distinct mechanisms explain the specificity for different stimuli.Diabetes 31: 776–783Google Scholar
  28. Henquin, J.C., Meissner, H.P. 1982. Opposite effects of tolbutamide and diazoxide on86Rb fluxes and membrane potential in mouse pancreatic B-cells.Biochem. Pharmacol. 31: 1407–1413Google Scholar
  29. Katayama, M., Hofmann, F., Trautwein, W. 1985. On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea pig heart.Pfluegers Arch. 405: 285–293Google Scholar
  30. Matthews, E.K., Sakamoto, Y. 1975. Electrical characteristics of pancreatic islet cells.J. Physiol. (London) 246: 421–437Google Scholar
  31. Petersen, O.H. 1988. Control of potassium channels in insulin-secreting cells.ISI Atlas Sci. (Biochem.) 1: 144–149Google Scholar
  32. Petersen, O.H., Dunne, M.J. 1989. Regulation of K+ channels plays a crucial role in the control of insulin secretion.Pfluegers Arch. 414: S115-S120Google Scholar
  33. Petersen, O.H., Findlay, I. 1987. Electrophysiology of the pancreas.Physiol. Rev. 67: 1054–1116Google Scholar
  34. Praz, G.A., Halban, P.A., Wollheim, C.B., Blondel, B., Strauss, A.J., Renold, A.E. 1983. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F).Biochem J. 210: 345–352Google Scholar
  35. Quast, U., Cook, N.S. 1989. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and there inhibition by glibenclamide.J. Pharmacol. Exp. Ther. 250: 261–271Google Scholar
  36. Ribalet, B., Eddlestone, G.T., Ciani, S. 1988. Metabolic regulation of the K(ATP) and a K(MAXI) channel in the insulin-secreting RINm5F cell.J. Gen. Physiol. 92: 219–237Google Scholar
  37. Rorsman, P., Arkhammar, P., Berggren, P.-O. 1986. Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells.Am. J. Physiol. 251: C912-C919Google Scholar
  38. Rorsman, P., Trube, G. 1985. Glucose-dependent K+ channels in pancreatic B-cells are regulated by intracellular ATP.Pfluegers Arch. 405: 305–309Google Scholar
  39. Sanguinetti, M.C., Scott, A.L., Zingaro, G.J., Siegl, P.K.S. 1988. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle.Proc. Nat. Acad. Sci USA 85: 8360–8364Google Scholar
  40. Schlegel, W., Winiger, B.P., Mollard, P., Voucher, P., Warnin, F., Zahnd, G.R., Wollheim, C.B., Dufy, B. 1987. Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials.Nature (London) 329: 719–721Google Scholar
  41. Schlegel, W., Winiger, B.P., Warnin, F., Zahnd, G.R., Wollheim, C.B. 1988. Monitoring receptor mediated regulation of cytosolic calcium in single pituitary cells by dual excitation microfluorimetry.J. Recept. Res. 8: 493–507Google Scholar
  42. Schmid-Antomarchi, H., De Weille, J., Fosset, M., Lazdunski, M. 1987. The antidiabetic sulphonylurea glibenclamide is a potent blocker of ATP-modulated K+ channels in insulin-secreting cells.Biochem. Biophys. Res. Commun. 146: 21–25Google Scholar
  43. Shetty, S.S., Weiss, G.B. 1987. Dissociation of actions of BRL 34915 in the rat portal vein.Eur. J. Pharmacol. 141: 485–488Google Scholar
  44. Standen, N.B., Quayle, J.M., Davies, N.W., Brayden, J.E., Huang, Y., Nelson, M.T. 1989. Hyperpolarizing vasodialators activate ATP-sensitive K+ channels in arterial smooth muscle cells.Science 245: 177–180Google Scholar
  45. Trube, G., Rorsman, P., Ohno-Shosaku, T. 1986. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic B-cells.Pfluegers Arch. 407: 493–499Google Scholar
  46. Velasco, J.M., Petersen, J.U.H., Petersen, O.H. 1988. Single-channels Ba2+ currents in insulin-secreting cells are activated by glyceraldehyde stimulation.FEBS Lett. 231: 366–370Google Scholar
  47. Wollheim, C.B., Biden, T.J. 1987. Signal transduction in insulin secretion: Comparison between fuel and receptor agonist.Ann. NY Acad. Sci. 488: 317–333Google Scholar
  48. Yule, D.I., Gallacher, D.V. 1988. Oscillations of cytosolic calcium in single pancreatic acinar cells stimulated by acetylcholine.FEBS Lett. 239: 558–562Google Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • M. J. Dunne
    • 1
  • D. I. Yule
    • 1
  • D. V. Gallacher
    • 1
  • O. H. Petersen
    • 1
  1. 1.The MRC Secretory Control Research Group, Physiological LaboratoryUniversity of LiverpoolLiverpoolEngland

Personalised recommendations