Skip to main content
Log in

Action of glucosamine on acetylcholine-sensitive channels

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The action of glucosamine was studied on voltage clamped neurones ofAplysia, presenting an excitatory response to acetylcholine. Noise and relaxation experiments show that glucosamine increases the mean channel open time and reduces the amplitude of the elementary current associated with the acetylcholine response. Both effects are enhanced by hyperpolarization of the cell membrane. The results are interpreted by a model assuming glucosamine binding to open channels. This binding impedes the flow of permeant ions and decreases the closing rate of the channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.R. 1975. A model for the procaine end-plate current.J. Physiol. (London) 246:61P

    Google Scholar 

  • Adams, P.R. 1977. Voltage jump analysis of procaine action at frog end-plate.J. Physiol. (London) 268:291

    Google Scholar 

  • Adams, P.R., Sakmann, B. 1978. A comparison of current-voltage opens and blocks endplate channels.Proc. Nat. Acad. Sci. USA 75:2994

    Google Scholar 

  • Anderson, C.R., Stevens, C.F. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction.J. Physiol. (London) 235:655

    Google Scholar 

  • Armstrong, C.M. 1975. K pores of nerve and muscle membranes.In: Membranes—A Series of Advances. G. Eisenman, Editor. Vol. 3, p. 325. Marcel Dekker, New York

    Google Scholar 

  • Ascher, P., Large, W.A., Rang, H.P. 1979. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells.J. Physiol. (London) 295:139

    Google Scholar 

  • Ascher, P., Marty, A., Neild, T.O. 1978a. Life time and elementary conductance of the channels mediating the excitatory effects of acetylcholine inAplysia neurones.J. Physiol. (London) 278:177

    Google Scholar 

  • Ascher, P., Marty, A., Neild, T.O. 1978b. The mode of action of antagonists of the excitatory response to acetylcholine inAplysia neurones.J. Physiol. (London) 278:207

    Google Scholar 

  • Colquhoun, D., Sheridan, R.E. 1979. Modes of action of gallamine at the neuromuscular junction.Br. J. Pharmacol. 66:78P

    Google Scholar 

  • Dwyer, T.M., Adams, D.J., Hille, B. 1979. Ionic selectivity of endplate channels.Biophys. J. 25:67a

    Google Scholar 

  • Fatt, P., Katz, B. 1951. An analysis of the end-plate potential recorded with an intracellular electrode.J. Physiol. (London) 115:320

    Google Scholar 

  • Huang, L-Y.M., Catterall, W.A., Ehrenstein, G. 1978. Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells.J. Gen. Physiol. 71:397

    Google Scholar 

  • Katz, B., Miledi, R. 1972. The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. (London) 224:665

    Google Scholar 

  • Koketsu, K. 1958. Action of tetraethylammonium chloride on neuromuscular transmission in frogs.Am. J. Physiol. 193:213

    Google Scholar 

  • Koketsu, K., Nishi, S. 1959. Restoration of neuromuscular transmission in sodium-free hydrazinium solution.J. Physiol. (London) 147:239

    Google Scholar 

  • Lassignal, N.L., Martin, A.R. 1977. Effect of acetylcholine on postjunctional membrane permeability in eel electroplaque.J. Gen. Physiol. 70:23

    Google Scholar 

  • Maeno, T., Edwards, C., Anraku, M. 1977. Permeability of the endplate membrane activated by acetylcholine to some organic cations.J. Neurobiol. 8:173

    Google Scholar 

  • Mallart, A., Molgo, J. 1978. The effects of pH and curare on the time course of end-plate currents at the neuromuscular junction of the frog.J. Physiol. (London) 276:343

    Google Scholar 

  • Marchais, D., Marty, A. 1979. Interaction of permeant ions with channels activated by acetylcholine inAplysia neurones.J. Physiol. (London) 297:9

    Google Scholar 

  • Marty, A. 1978. Noise and relaxation studies of acetylcholine induced currents in the presence of procaine.J. Physiol. (London) 278:237

    Google Scholar 

  • Neher, E., Sakmann, B. 1975. Voltage dependence of drug-induced conductance in frog neuromuscular junction.Proc. Nat. Acad. Sci. USA 72:2140

    Google Scholar 

  • Neher, E., Steinbach, J.H. 1978. Local anaesthetics transiently block currents through single acetylcholine receptor channels.J. Physiol. (London) 277:153

    Google Scholar 

  • Parsons, R.L. 1969. Mechanism of neuromuscular blockade by tetraethylammonium.Am. J. Physiol. 216:925

    Google Scholar 

  • Ruff, R.L. 1977. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations.J. Physiol. (London) 264:89

    Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1960. On the permeability of end-plate membrane during the action of transmitter.J. Physiol. (London) 154:52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchais, D., Marty, A. Action of glucosamine on acetylcholine-sensitive channels. J. Membrain Biol. 56, 43–48 (1980). https://doi.org/10.1007/BF01869350

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869350

Keywords

Navigation