Advertisement

The Journal of Membrane Biology

, Volume 96, Issue 1, pp 27–43 | Cite as

Cell membrane water permeability of rabbit cortical collecting duct

  • Kevin Strange
  • Kenneth R. Spring
Articles

Summary

The water permeability (Posm) of the cell membranes of isolated perfused rabbit cortical collecting ducts was measured by quantitative light microscopy. Water permeability of the basolateral membrane, corrected for surface area, was 66 μm·sec−1 for principal cells and 62.3 μm·sec−1 for intercalated cells. Apical membranePosm values corrected for surface area, were 19.2 and 25 μm·sec−1 for principal and intercalated cells, respectively, in the absence of antidiuretic hormone (ADH). Principal and intercalated cells both responded to ADH by increasingPosm of their apical membranes to 92.2 and 86.2 μ·sec−1 respectively. The ratio of the total basolateral cell membrane osmotic water permeability to that of the apical cell membrane was ∼27∶1 in the absence of ADH and ∼7∶1 in the presence of the hormone for both cell types. This asymmetry in water permeability is most likely due to the fact that basolateral membrane surface area is at least 7 to 8 times greater than that of the apical membrane. Both cell types exhibited volume regulatory decrease when exposed to dilute serosal bathing solutions. Upon exposure to a hyperosmotic serosal bath (390 mosm), pricipal cells did not volume regulate while two physiologically distinct groups of intercalated cells were observed. One group of intercalated cells failed to volume regulate; the second group showed almost complete volume regulatory increase behavior.

Key Words

light microscopy antidiuretic hormone epithelial cell volume principal cell intercalated cell volume regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Zahid, G., Schafer, J.A., Troutman, S.L., Andreoli, T.E. 1977. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: Evidence for parallel diffusion in luminal plasma membranes.J. Membrane Biol. 31:103–129Google Scholar
  2. 2.
    Barfuss, D.W., Schafer, J.A. 1981. Collection and analysis of absorbate from proximal straight tubules.Am. J. Physiol. 241:F597-F604PubMedGoogle Scholar
  3. 3.
    Barry, P.H., Diamond, J.M. 1984. Effects of unstirred layers on membrane phenomena.Physiol. Rev. 64:763–872PubMedGoogle Scholar
  4. 4.
    Berry, C.A., 1983. Water permeability and pathways in the proximal tubule.Am. J. Physiol. 245:F279-F294PubMedGoogle Scholar
  5. 5.
    Burg, M.B. 1972. Perfusion of isolated renal tubules.Yale J. Biol. Med. 45:321–326PubMedGoogle Scholar
  6. 6.
    Carpi-Medina, P., Lindmann, B., Gonzales, E., Whittembury, G. 1984. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality.Pfluegers Arch. 400:343–348Google Scholar
  7. 7.
    Dellasega, M., Grantham, J. 1973. Regulation of renal tubule cell volume in hypotonic media.Am. J. Physiol. 224:1288–1294PubMedGoogle Scholar
  8. 8.
    DiBona, D.R., Civan, M.M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79–91Google Scholar
  9. 9.
    Dratwa, M., Tisher, C.C., Sommer, J.R., Croker, B.P. 1979. Intramembranous particle aggregation in toad urinary bladder after vasopressin stimulation.Lab. Invest. 40:46–54PubMedGoogle Scholar
  10. 10.
    Fettiplace, R., Haydon, D.A 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550PubMedGoogle Scholar
  11. 11.
    Finkelstein, A. 1984. Water movement through membrane channels.Curr. Top. Membr. Transp. 21:295–308Google Scholar
  12. 12.
    Freel, R.W. 1978. Patterns of water and solute regulation in the muscle fibres of osmoconforming marine decapod crustaceans.J. Exp. biol. 72:107–126Google Scholar
  13. 13.
    Ganote, C.E., Grantham, J.J., Mores, H.L., Burg, M.B., Orloff, J. 1968. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit.J. Cell Biol. 36:355–367CrossRefPubMedGoogle Scholar
  14. 14.
    Gonzales, E., Carpi-Medina, P., Linares, H., Whittembury, G. 1984. Osmotic water permeability of the apical membrane of proximal straight tubular (PST) cells.Pfluegers Arch. 402:337–339Google Scholar
  15. 15.
    Greger, R., Schlatter, E. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney:Pfluegers Arch. 396:315–324Google Scholar
  16. 16.
    Handler, J.S., Preston, A.S. 1976. Study of enzymes regulating vasopressin-stimulated cyclic AMP metabolism in separated mitochondria-rich and granular epithelial cells of toad urinary bladder.J. Membrane Biol. 22:43–50Google Scholar
  17. 17.
    Hays, R.M. 1983. Alteration of luminal membrane structure by antidiuretic hormone.Am. J. Physiol. 245:C298-C296Google Scholar
  18. 18.
    Hebert, S.C., Schafer, J.A., Andreoli, T.E. 1981. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron,J. Membrane Biol. 58:1–19Google Scholar
  19. 19.
    House, C.R. 1974. Water Transport in Cells and Tissues. Edward Arnold, LondonGoogle Scholar
  20. 20.
    Kachadorian, W.A., Casey, C., DiScala, V.A. 1978. Time course of ADH-induced intramembranous particle aggregation in toad urinary bladder.Am. J. Physiol. 234:F461-F465Google Scholar
  21. 21.
    Kachadorian, W.A., Sariban-Sohraby, S., Spring, K.R. 1985. Regulation of water permeability in toad urinary bladder at two barriers.Am. J. Physiol. 248:F260-F265Google Scholar
  22. 22.
    Kaissling, B., Kriz, W. 1979. Structural analysis of the rabbit kidney.In Advances in Anatomy and Cell Biology. A. Brodal et al., editors. Vol. 56, pp. 1–123. Springer, New YorkGoogle Scholar
  23. 23.
    Kirk, K. L., DiBona, D.R., Schafer, J.A. 1984. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: Quantitative examination with differential interference contrast microscopy.J. Membrane Biol. 79:53–64Google Scholar
  24. 24.
    Kirk, K.L., Schafer, J.A., DiBona, D.R. 1984. Quantitative analysis of the structural events associated with antidiuretic hormone-induced volume reabsorption in the rabbit cortical collecting tubule.J. Membrane Biol. 79:65–74Google Scholar
  25. 25.
    Kriz, W., Kaissling, B. 1985. Structural organization of the mammalian kidney.In: The Kidney: Physiology and Pathophysiology D.W. Seldin and G. Giebisch, editors. Vol. 1, 265–306. Raven, New YorkGoogle Scholar
  26. 26.
    Larson, M., Spring, K.R. 1984. Volume regulation byNecturus gallbladder: Basolateral KCL exit.J. Membrane Biol. 81:219–232Google Scholar
  27. 27.
    Lau, Y.T., Parsons, R.H., Feeney, G.A., Walker, K.L. 1981. Bath osmolality: Effect on water permeability of epithelial tissue.Am. J. Physiol. 242:C184-C191Google Scholar
  28. 28.
    Persson, B.E., Spring, K.R. 1982. Gallbladder epithelial cell hydraulic water permeability and volume regulation.J. Gen. Physiol 79:481–505PubMedGoogle Scholar
  29. 29.
    Schafer, J.A., Patlak, C.S., Andreoli, T.E. 1974. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.J. Gen. Physiol. 64:201–227Google Scholar
  30. 30.
    Schwartz, G.J., Al-Awqati, Q. 1985. Two functionally distinct types of mitochondria-rich (MR) cells of cortical collecting tubules (CCT) as determined by changes in pH (pHi) in individually identified cells.Kidney Int. 27:288Google Scholar
  31. 31.
    Schwartz, G.J., Al-Awqati, Q. 1985. Polarity of H+ transport in the two types of mitochondria-rich (MR) cells of cortical collecting tubules (CCT).Clin. Res. 33:497AGoogle Scholar
  32. 32.
    Scott W.N., Sapirstein, V.S., Yoder, M.J. 1974. Partition of tissue functions in epithelia: Localization of enzymes in “mitochondria-rich” cells of toad urinary bladder.Science 184:797–799PubMedGoogle Scholar
  33. 33.
    Spring, K.R. 1983. Fluid transport by gallbladder epithelium.J. Exp. Biol. 106:181–194PubMedGoogle Scholar
  34. 34.
    Spring, K.R., Hope, A. 1979. Fluid transport and the dimensions of cells and interspaces of livingNecturus gallbladder.J. Gen. Physiol. 73:287–305PubMedGoogle Scholar
  35. 35.
    Strange, K., Spring, K.R. 1986. Methods for imaging renal tubule cells.Kidney Int. 30:192–200PubMedGoogle Scholar
  36. 36.
    Strange, K., Spring, K.R. 1987. Absence of significant cytoplasmic dilution during ADH-stimulated water reabsorption in a tight epithelium.Science (in press) Google Scholar
  37. 37.
    Terwilliger, T., Solomon, A.K. 1981. The osmotic water permeability of human red cells.J. Gen. Physiol. 77:549–570PubMedGoogle Scholar
  38. 38.
    Verlander, J.W., Madsen, K.M., Tisher, C.C. 1985. Two populations of intercalated cells exist in the cortical collecting duct of the rat.Clin. Res. 33:501aGoogle Scholar
  39. 39.
    Wade J.B., O'Neil, R.G., Pryor, J.L., Boulpaep, E.L. 1979. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones.J. Cell Biol. 81:439–445PubMedGoogle Scholar
  40. 40.
    Welling, L.W., Evan, A.P., Welling, D.J. 1981. Shape of cells and extracellular channels in rabbit cortical collecting ducts.Kidney Int. 20:211–222PubMedGoogle Scholar
  41. 41.
    Welling, L.W., Welling, D.J., Ochs, T.J. 1983. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule.Am. J. Physiol. 245:F123-F129Google Scholar
  42. 42.
    Whittembury, G., Grantham, J.J. 1976. Cellular aspects of renal sodium transport and cell volume regulation.Kidney Int. 9:103–120PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Kevin Strange
    • 1
  • Kenneth R. Spring
    • 1
  1. 1.Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesda

Personalised recommendations