The Journal of Membrane Biology

, Volume 114, Issue 3, pp 245–256 | Cite as

Demonstration of the electrogenicity of proton translocation during the phosphorylation step in gastric H+K+-ATPase

  • H. T. W. M. van der Hijden
  • E. Grell
  • J. J. H. H. M. de Pont
  • E. Bamberg
Articles

Summary

Membrane fragments containing the H+K-ATPase from parietal cells have been adsorbed to a planar lipid membrane. The transport activity of the enzyme was determined by measuring electrical currents via the capacitive coupling between the membrane sheets and the planar lipid film. To initiate the pump currents by the ATPase a light-driven concentration jump of ATP from caged ATP was applied as demonstrated previously for Na+K+-ATPase (Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985.EMBO J.4:3079–3085). Since H+K+-ATPase is an electroneutrally working enzyme no stationary pump currents were observed in the presence of K+. By separation of the H+ and K+ transport steps of the reaction cycle, however, the electrogenic step of the phosphorylation could be measured. This was achieved in the absence of K+ or at low concentrations of K+. The observed transient current is ATP dependent which can be assigned to the proton movement during the phosphorylation. From this it was conclueded that the K+ transport during dephosphorylation is electrogenic, too, in contrast to the Na+K+-ATPase where the K+ step is electroneutral. The transient current was measured at different ionic conditions and could be blocked by vanadate and by the H+K+-ATPase specific inhibitor omeprazole. An alternative mechanism for activation of this inhibitor is discussed.

Key Words

gastric H+K+-ATPase caged ATP pump currents planar lipid films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, R.F., De Weer, P. 1978. Electric current generated by squid giant axon sodium pump: External K+ and internal ADP effects.Am. J. Physiol. 235:c63-c68Google Scholar
  2. Albers, R.W. 1967. Biochemical aspects of active transport.Annu. Rev. Biochem. 36:727–756Google Scholar
  3. Bahinski, A., Nakao, M., Gadsby, C. 1988. Potassium translocation by the Na+K+-pump is voltage insensitive.Proc. Natl. Acad. Sci. USA 85:3412–3416Google Scholar
  4. Bamberg, E., Apell, H.-J., Dencher, N.A., Sperling, W., Stieve, H., Läuger, P. 1979. Pump currents generated by bacteriorhodopsin on planar lipid membranes.Biophys. Struct. Mechan. 5:277–292Google Scholar
  5. Borlinghaus, R., Apell, H.-J., Läuger, P. 1987. Fast charge translocations associated with partial reactions of the Na,K-pump: I. Current and voltage transients after photochemical release of ATP.J. Membrane Biol. 97:161–178Google Scholar
  6. Christensen, B., Gutweiler, M., Grell, E., Wagner, N., Pabst, R., Dose, K., Bamberg, E. 1988. Pump and displacement currents of reconstituted ATP synthase on black lipid membranes.J. Membrane Biol. 104:179–191Google Scholar
  7. Dancshazy, Z., Karvaly, B. 1976. Incorporation of bacteriorhodopsin into a bilayer lipid membrane. A photoelectric-spectroscopic study.FEBS Lett. 72:136–138Google Scholar
  8. Drachev, L.A., Frolov, V.N., Kaulen, A.D., Liberman, E.A., Ostroumov, S.A., Plakunova, V.G., Semenov, A.Y., Skulachev, V.P. 1976a. Reconstitution of biological molecular generators of electric current bacteriorhodopsin.J. Biol. Chem. 251:7059–7065Google Scholar
  9. Drachev, L.A., Jasaitis, A.A., Kaulen, A.D., Kondraskin, A.A., Liberman, E.A., Nemecek, I.B., Ostroumov, S.A., Semenov, A.Y., Skulachev, V.P. 1974. Direct measurement of electric current generation by cytochrome oxidase. H+-ATPase and bacteriorhodopsin.Nature (London) 249:321–324Google Scholar
  10. Drachev, L.A., Jasaitis, A.A., Mikelsaar, H., Nemecek, I.B., Semenov, A.Y., Semenova, E.G., Severina, I.I., Skulachev, V.P. 1976b. Reconstitution of biological molecular generators of electric current.J. Biol. Chem. 251:7077–7082Google Scholar
  11. Fahr, A., Läuger, P., Bamberg, E. 1981. Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes.J. Membrane Biol. 60:51–62Google Scholar
  12. Fellenius, E., Berlindh, T., Sachs, G., Olbe, L., Elander, B., Sjöstrand, S.-E., Wallmark, B. 1981. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H++K+)-ATPase.Nature (London) 290:159–161Google Scholar
  13. Fendler, K., Grell, E., Bamberg, E. 1987. Kinetics of pump currents generated by the (Na++K+)-ATPase.FEBS Lett. 224:83–88Google Scholar
  14. Fendler, K., Grell, E., Haubs, M., Bamberg, E. 1985. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes.EMBO J 4:3079–3085Google Scholar
  15. Fendler, K., van der Hijden, H., Nagel, G., de Pont, J.J.H.H.M., Bamberg, E. 1988. Pump currents generated by renal Na+K+-ATPase and gastric H+K+-ATPase on black lipid membranes.In: The Na+,K+-Pump, Part A: Molecular Aspects. J.C. Skou, J.G. Nørby, A.B. Maunsbach, and M. Esmann, editors. pp. 501–510. Alan R. Liss, New YorkGoogle Scholar
  16. Forte, J.G., Forte, G.M., Saltman, P. 1967. K+ stimulated phosphatase of microsomes from gastric mucosa.J. Cell. Physiol. 69:293–304Google Scholar
  17. Forte, J.G., Ganser, A.L., Tanisawa, A.S. 1974. The K+-stimulated ATPase system of microsomal membranes from gastric oxyntic cells.Ann. NY Acad. Sci. 242:255–267Google Scholar
  18. Gadsby, D.C., Kimura, J., Noma, A. 1985. Voltage dependence of Na,K pump current in isolated heart cells.Nature (London) 315:63–65Google Scholar
  19. Goldin, S.M., Tong, S.W. 1974. Reconstitution of active transport catalyzed by the purified sodium and potassium ion-stimulated triphosphatase from canine renal medulla.J. Biol. Chem. 249:5907–5915Google Scholar
  20. Goldschlegger, R., Karlish, S.J.D., Raphaeli, A., Stein, W.D., 1987. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.J. Physiol. (London) 387:331–355Google Scholar
  21. Hartung, K., Grell, E., Hasselbach, W., Bamberg, E. 1987. Electrical pump currents generated by the Ca++ ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes.Biochim. Biophys. Acta 900:209–220Google Scholar
  22. Helmich-de Jong, M.L., van Emst-de Vries, S.E., DePont, J.J.H.H.M. 1987. Conformational states of (K++H+)-ATPase studied using trypsin digestion as a tool.Biochim. Biophys. Acta 905:358–370Google Scholar
  23. Herrmann, T.R., Rayfield, G.W. 1978. The electrical response to light of bacteriorhodopsin in planar membranes.Biophys. J. 21:111–125Google Scholar
  24. Im, W.B., Sih, J.C., Blakeman, D.P., McGrath, P. 1984. Omeprazole, a specific inhibitor of gastric (H++H+)-ATPase, is a H+-activated oxidizing agent of sulfhydryl groups.J. Biol. Chem. 260:4591–4597Google Scholar
  25. Jackson, R.J., Mendlein, J., Sachs, G. 1983. Interaction of fluorescein isothiocyanate with the (H++K+)-ATPase.Biochim. Biophys. Acta 731:9–15Google Scholar
  26. Jackson, R.J., Saccomani, G. 1984. Phosphorylation of gastric (H++K+)-ATPase by inorganic phosphate.Biophys. J. 45:83aGoogle Scholar
  27. Jorgensen, P.L. 1974. Isolation of the Na+K+ ATPase.Methods Enzymol. 32:272–298Google Scholar
  28. Kaplan, J.H., Forbush, B., III, Hoffmann, J.F. 1978. Rapid photolytic release of adenosine-5 triphosphatase from a protected analogue: Utilization by the Na: K pump of human red blood cell ghosts.Biochemistry 17:1929–1935Google Scholar
  29. Karlish, S.J.D., Raphaeli, A., Stein, W.D. 1985. Transmembrane modulation of cation transport by the Na,K-pump.In: The Sodium Pump. I.M. Glynn and J.C. Ellory, editors. pp. 487–499. Company of Biologists, CambridgeGoogle Scholar
  30. Lafaire, A.V., Schwarz, W. 1984. Voltage dependence of the rheogenic Na+K+ ATPase in the membrane from oocytes ofXenopus laeris.J. Membrane Biol. 91:43–51Google Scholar
  31. Larsson, H., Carlsson, E., Junggren, L.O., Sjöstrand, S.E., Skanberg, I., Sundell, S. 1983. Inhibition of gastric acid secretion by omeprazole in the dog and rat.Gastroenterology 85:900–907Google Scholar
  32. Lee, J., Simpson, G., Scholes, P. 1974. An ATPase from dog gastric mucosa: Changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis.Biochem. Biophys. Res. Commun. 60:825–832Google Scholar
  33. Lindberg, P., Nordberg, P., Alminger, T., Brändström, A., Wallmark, B. 1986. The mechanism of action of the gastric secretion inhibitor omeprazole.J. Med. Chem. 29:1327–1329Google Scholar
  34. Ljungström, M., Mārdh, S., 1985. Kinetics of the acid pump in the stomach.J. Biol. Chem. 260:5440–5444Google Scholar
  35. Ljungström, M., Vega, F.V., Mårdh, S. 1984. Effects of pH on the interaction of ligands with the (H++K+)-ATPase purified from pig gastric mucosa.Biochim. Biophys. Acta 769:220–230Google Scholar
  36. Lorentzon, P., Sachs, G., Wallmark, B. 1988. Inhibitory effects of cations on the gastric H+K+ ATPase. A potential sensitive step in the K+-limb of the pump cycle.J. Biol. Chem. 263:10, 705–10, 710Google Scholar
  37. McCray, J.A., Herbette, L., Kihara, T., Trentham, D.R. 1980. A new approach to time-resolved studies of ATP-requiring biological systems: Laserflash photolysis of caged ATP.Proc. Natl. Acad. Sci. USA 77:7237–7241Google Scholar
  38. Morii, M., Ishimura, N., Takeguchi, N. 1984. Quasi-elastic light scattering studies of conformational states of the (H++K+)-ATPase. Intersesicular aggregation of gastric vesicles by disulfide cross-linking.Biochemistry 23:6818–6821Google Scholar
  39. Mueller, P., Rudin, D.O., Tien, H.T., Wescott, W.C. 1962. Reconstitution of excitable cell membrane structurein vitro.Circulation 26:1167–1171Google Scholar
  40. Nagel, G., Fendler, K., Grell, E., Bamberg, E. 1987. Na+ currents generated by the purified (Na++K+)-ATPase on planar lipid membranes.Biochim. Biophys. Acta 901:239–249Google Scholar
  41. Post, R.L., Kume, S., Tobin, T., Orcutt, B., Sen, A.K. 1969. Flexibility of an active center in sodium plus potassium adenosine triphosphatase.J. Gen. Physiol. 54:306s-326sGoogle Scholar
  42. Rabon, E., Gunther, R.D., Soumarmon, A., Bassilian, S., Lewin, M., Sachs, G. 1985. Solubilisation and reconstitution of gastric (H++K+)-ATPase.J. Biol. Chem. 260:10200–10207Google Scholar
  43. Rabon, E., McFall, T., Sachs, G. 1982. The gastric (H++K+)-ATPase: H+/ATP stoichiometry.J. Biol. Chem. 257:6296–6299Google Scholar
  44. Ray, T.K., Forte, J.G. 1976. Studies on the phosphorylated intermediates of a K+-stimulated ATPase from rat gastric mucosa.Biochim. Biophys. Acta 443:451–467Google Scholar
  45. Reenstra, W.W., Forte, J.G. 1981. Proton/ATP stoichiometry for the gastric (H++K+)-ATPase.J. Membrane Biol. 61:55–60Google Scholar
  46. Sachs, G., Chang, H.H., Rabon, E., Schackmann, R., Lewin, M., Saccomani, G. 1976. A non electrogenic H+ pump in plasma membranes of hog stomach.J. Biol. Chem. 251:7690–7698Google Scholar
  47. Sachs, G., Faller, L.D., Rabon, E. 1982. Proton/hydroxyl transport in gastric and intestinal epithelia.J. Membrane Biol. 64:123–125Google Scholar
  48. Schrijen, J.J., Luyben, W.A.H.M., De Pont, J.J.H.H.M., Bonting, S.L. 1980. Studies on (K++H+)-ATPase I. Essential arginine residue in its substrate binding center.Biochim. Biophys. Acta 597:331–344Google Scholar
  49. Schrijen, J.J., Van Groningen-Luyben, W.A.H.M., De Pont, J.J.H.H.M., Bonting, S.L. 1981. Studies on (K++H+)-ATPase II. Role of sulfhydryl groups in its reaction mechanism.Biochim. Biophys. Acta 640:473–486Google Scholar
  50. Shull, G.E., Greeb, J. 1988. Molecular cloning of two isoforms of the plasma membrane Ca2+ transporting ATPase from rat brain. Structural and functional domains exhibit similarity to (Na++K+)ATPase and other transport ATPases.J. Biol. Chem. 263:8646–8657Google Scholar
  51. Shull, G.E., Lingrel, J.B. 1986. Molecular cloning of the rat stomach (H++K+)ATPase.J. Biol. Chem. 261:16788–16791Google Scholar
  52. Shull, G.E., Schwartz, A., Lingrel, J.B. 1985. Amino-acid sequence of the catalytic subunit of the (Na++K+)-ATPase deduced from complementary DNA.Nature (London) 316:691–695Google Scholar
  53. Skrabanja, A.T.P., De Pont, J.J.H.H.M., Bonting, S.L. 1984. The H+/ATP transport ratio of the (H++K+)-ATPase of pig gastric membrane vesicles.Biochim. Biophys. Acta 774:91–95Google Scholar
  54. Skrabanja, A.T.P., Van der Hijden, H.T.W.M., De Pont, J.J.H.H.M. 1987. Transport ratios of reconstituted (H++K+)ATPase.Biochim. Biophys. Acta 903:434–440Google Scholar
  55. Smith, G.S., Scholes, P.B. 1982. Stoichiometry of the (H++K+)-ATPase of dog gastric microsomes.Biochim. Biophys. Acta 688:803–807Google Scholar
  56. Stewart, H.B., Wallmark, B., Sachs, G. 1981. The interaction of H+ and K+ with the partial reactions of gastric (H++K+)-ATPase.J. Biol. Chem. 256:2682–2690Google Scholar
  57. Thomas, R.C. 1969. Membrane current and intracellular sodium changes in a snail neurone during extension of injected sodium.J. Physiol. (London) 201:495–514Google Scholar
  58. Wallmark, B., Brandström, A., Larsson, H. 1984. Evidence for acid-induced transformation of omeprazole into an active inhibitor of (H++K+)-ATPase within the parietal cell.Biochim. Biophys. Acta 778:549–558Google Scholar
  59. Wallmark, B., Mårdh, S. 1979. Phosphorylation and dephosphorylation kinetics of potassium stimulated ATP phosphohydrolase from hog gastric mucosa.J. Biol. Chem. 254:11899–11902Google Scholar
  60. Wallmark, B., Stewart, H.B., Rabon, E., Saccomani, G., Sachs, G. 1980. The catalytic cycle of gastric (H++K+)-ATPase.J. Biol. Chem. 255:5313–5319Google Scholar
  61. Walters, J.A.L.I., Bont, W.S. 1979. An improved method for the separation of proteins by zonal electrophoresis on density gradients.Anal. Biochem. 93:41–45Google Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • H. T. W. M. van der Hijden
    • 1
  • E. Grell
    • 2
  • J. J. H. H. M. de Pont
    • 1
  • E. Bamberg
    • 2
  1. 1.Department of BiochemistryUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Max-Planck-Institut für BiophysikFrankfurt/Main 70Germany

Personalised recommendations