Skip to main content
Log in

Characteristics of the volume- and chloride-dependent K transport in human erythrocytes homozygous for hemoglobin C

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In human red cells homozygous for hemoglobin C (CC), cell swelling and acid pH increase K efflux and net K loss in the presence of ouabain (0.1mm) and bumetanide. We report herein, that K influx is also dependent on cell volume in CC cells: cell swelling induces a marked increase in the maximal rate (from 6 to 18 mmol/liter cell × hr) and in the affinity for external K (from 77±16mm to 28±3mm) of K influx. When the external K concentration is varied from 0 to 140mm, K efflux from CC and normal control cells is unaffected. Thus, K/K exchange is not a major component of this K movement. K transport through the pathway of CC cells is dependent on the presence of chloride or bromide; substitution with nitrate, acetate or thiocyanate inhibits the volume- and pH-dependent K efflux. When CC cells are separated according to density, a sizable volume-dependent component of K efflux can be identified in all the fractions and is the most active in the least dense fraction. N-ethylmaleimide (NEM) markedly stimulates K efflux from CC cells in chloride but not in nitrate media, and this effect is present in all the fractions of CC cells separated according to density. The persistence of this transport system in denser CC cells suggests that not only cell age, but also the presence of the positively charged C hemoglobin is an important determinant of the activity of this system. These data also indicate that the K transport pathway of CC cells is not an electrodiffusional process and is coupled to chloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adragna, N.C., Tosteson, D.C. 1984. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.J. Membrane Biol. 78:43–52

    Google Scholar 

  • Ballas, S.K., Larner, J., Smith, E.D., Surrey, S., Schwartz, E., Rappaport, E.F. 1987. The xerocytosis of Hb SC disease.Blood 69:124–130

    PubMed  Google Scholar 

  • Berkowitz, L.R., Orringer, E.P. 1985. Chloride-dependent K transport mediates cell volume regulation in hemoglobin CC red blood cells.J. Gen. Physiol. 86:40a-41a

    Google Scholar 

  • Berkowitz, L.R., Orringer, E.P. 1987. Cell volume regulation in hemoglobin CC and AA erythrocytes.Am. J. Physiol. 252:C300-C306

    PubMed  Google Scholar 

  • Berkowitz, L.R., Walstad, D., Orringer, E.P. 1987. The effect of N-ethylmaleimide on K transport in density separated human red blood cells.Am. J. Physiol. 253:C7-C12

    PubMed  Google Scholar 

  • Brugnara, C., Bunn, H.F., Tosteson, D.C. 1986a. Regulation of erythrocyte cation and water content in sickle cell anemia.Science 232:388–390

    PubMed  Google Scholar 

  • Brugnara, C., Bunn, H.F., Tosteson, D.C. 1989a. Ion content and transport and the regulation of volume in sickle cells.Ann. NY Acad. Sci. (in press)

  • Brugnara, C., Canessa, M., Cusi, D., Tosteson, D.C. 1986b. Furosemide-sensitive Na and K fluxes in human red cells: Net uphill extrusion and equilibrium properties.J. Gen. Physiol. 87:91–112

    PubMed  Google Scholar 

  • Brugnara, C., Kopin, A.S., Bunn, H.F., Tosteson, D.C. 1985. Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease.J. Clin. Invest. 75:1608–1617

    PubMed  Google Scholar 

  • Brugnara, C., Tosteson, D.C. 1987a. Cell volume, K transport and cell density in human erythrocytes.Am. J. Physiol. 252:C269-C276

    PubMed  Google Scholar 

  • Brugnara, C., Tosteson, D.C. 1987b. Inhibition of K transport by divalent cations in sickle erythrocytes.Blood 70:1810–1815

    PubMed  Google Scholar 

  • Brugnara, C., Van Ha, T., Tosteson, D.C. 1989b. Role of chloride in potassium transport through a KCl cotransport system in human red blood cells.Am. J. Physiol. 256:C994-C1003

    PubMed  Google Scholar 

  • Cala, P.M. 1980. Volume regulation byAmphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion flux pathways.J. Gen. Physiol. 76:683–708

    PubMed  Google Scholar 

  • Cala, P.M. 1983. Cell volume regulation byAmphiuma red blood cells: The role of Ca2+ as a modulator of alkali metal/H+ exchange.J. Gen. Physiol. 82:761–784

    PubMed  Google Scholar 

  • Cala, P.M. 1985. Volume regulation byAmphiuma red blood cells: Strategies for identifying alkali metal/H+ transport.Fed. Proc. 44:2500–2507

    PubMed  Google Scholar 

  • Canessa, M., Brugnara, C., Cusi, D., Tosteson, D.C. 1986a. Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells.J. Gen. Physiol. 87:113–142

    PubMed  Google Scholar 

  • Canessa, M., Fabry, M.E., Blumenfeld, N., Nagel, R.L. 1987. Volume-stimulated, Cl-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin of HbS.J. Membrane Biol. 97:97–103

    Google Scholar 

  • Canessa, M., Spalvins, A., Nagel, R.L. 1986b. Volume-dependent and NEM-stimulated K+, Cl transport is elevated in oxygenated SS, SC and CC human red cells.FEBS Lett. 200:197–202

    PubMed  Google Scholar 

  • Clark, M.R., Morrison, C.E., Shohet, S.B. 1978. Monovalent cation transport in irreversibly sickled cells.J. Clin. Invest. 62:329–337

    PubMed  Google Scholar 

  • Diepenhorst, P., Sprokholt, R., Prins, H.K. 1972. Removal of leucocytes from whole blood and erythrocyte suspensions by filtration through cotton wool.Vox Sang. 23:308–320

    PubMed  Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318:511–530

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    PubMed  Google Scholar 

  • Escobales, N., Canessa, M. 1986. Amiloride-sensitive Na+ transport in human red cells: Evidence for a Na/H exchange system.J. Membrane Biol. 90:21–28

    Google Scholar 

  • Fujise, H., Lauf, P.K. 1987. Swelling, NEM, and A23187 activate Cl-dependent K+ transport in high K+ sheep red cells.Am. J. Physiol. 252:C197-C204

    PubMed  Google Scholar 

  • Funder, J., Wieth, J.O. 1967. Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain-treated human red cells.Acta Physiol. Scand. 71:168–185

    PubMed  Google Scholar 

  • Gardos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653–654

    PubMed  Google Scholar 

  • Glynn, I.M., Karlish, S.J.D. 1975. The sodium pump.Annu. Rev. Physiol. 37:13–55

    PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., Dupre, A., Rothstein, A. 1982a. Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 80:801–823

    PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., Rothstein, A. 1983. Volume-induced anion conductance in human B lymphocytes is cation dependent.Am. J. Physiol. 245:C160-C163

    PubMed  Google Scholar 

  • Grinstein, S., Dupre, A., Rothstein, A. 1982b. Volume-regulation by human lymphocytes. Role of calcium.J. Gen. Physiol. 79:849–868

    PubMed  Google Scholar 

  • Gryorczyk, R., Schwartz, W., Passow, H. 1984. Ca2+ activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes.Biophys. J. 45:693–698

    PubMed  Google Scholar 

  • Haas, M., McManus, T.J. 1985. Effect of norepinephrine on swelling-induced potassium transport in duck red cells.J. Gen. Physiol. 85:649–667

    PubMed  Google Scholar 

  • Haas, M., Schmidt, W.F., McManus, T.J. 1982. Catecholamine-stimulated ion transport in duck red cells.J. Gen. Physiol. 80:125–147

    PubMed  Google Scholar 

  • Hall, A.C., Ellory, J.C. 1986a. Effects of high hydrostatic pressure on “passive” monovalent cation transport in human red cells.J. Membrane Biol. 94:1–17

    Google Scholar 

  • Hall, A.C., Ellory, J.C. 1986b. Evidence for the presence of volume-sensitive KCl transport in “young” human red cells.Biochim. Biophys. Acta 858:317–320

    PubMed  Google Scholar 

  • Kaji, D. 1985. Volume-activated K flux in human erythrocytes.J. Gen. Physiol. 86:40a (Abstr)

    Google Scholar 

  • Kaji, D. 1986. Volume sensitive K transport in human erythrocytes.J. Gen. Physiol. 88:719–738

    PubMed  Google Scholar 

  • Kaji, D., Kahn, T. 1985. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: Effect of NEM.Am. J. Physiol. 249:C490-C496

    PubMed  Google Scholar 

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media.Annu. Rev. Physiol. 43:493–505

    PubMed  Google Scholar 

  • Lauf, P.K. 1983a. Thiol-dependent passive K/Cl transport in sheep red cells: 1. Dependence on chloride and external K+[Rb]+ ions.J. Membrane Biol. 73:237–246

    Google Scholar 

  • Lauf, P.K. 1983b. Thiol-dependent passive K/Cl transport in sheep red cells: V. Dependence on metabolism.Am. J. Physiol. 245:C445-C448

    PubMed  Google Scholar 

  • Lauf, P.K. 1984. Thiol-dependent passive K/Cl transport in sheep red cells: IV. Furosemide inhibition as a function of external Rb+, Na+, and Cl.J. Membrane Biol. 77:57–62

    Google Scholar 

  • Lauf, P.K. 1985a. Passive K+Cl fluxes in low K+ sheep erythrocytes: Modulation by A23187 and bivalent cations.Am. J. Physiol. 249:C271-C278

    PubMed  Google Scholar 

  • Lauf, P.K. 1985b. K+∶Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  • Lauf, P.K. 1988a. Kinetic comparison of ouabain-resistant K∶Cl fluxes (K∶Cl∶[Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation.Mol. Cell Biochem. 82:97–106

    PubMed  Google Scholar 

  • Lauf, P.K. 1988b. Volume and anion dependency of ouabain-resistant K−Rb fluxes in sheep red blood cells.Am. J. Physiol. 255:C331-C339

    PubMed  Google Scholar 

  • Lauf, P.K., Adragna, N.C., Garay, R.P. 1984. Activation by N-ethylmaleimide of a latent K+−Cl flux in human red blood cells.Am. J. Physiol. 246:C385-C390

    PubMed  Google Scholar 

  • Lauf, P.K., Mangor-Jensen, A. 1984. Effects of A23187 and Ca2+ on volume and thiol-stimulated, ouabain-resistant K+Cl fluxes in low K+ sheep erythrocytes.Biochem. Biophys. Res. Commun. 125:790–796

    PubMed  Google Scholar 

  • Lauf, P.K., Perkins, C.M., Adragna, N.C. 1985. Cell volume and metabolic dependence of NEM-activated K+Cl flux in human red blood cells.Am. J. Physiol. 249:C124-C128

    PubMed  Google Scholar 

  • Lew, V.L., Garcia-Sancho, J. 1985. Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells.Cell Calcium 6:15–24

    PubMed  Google Scholar 

  • Logue, P., Anderson, C., Kanik, C., Farquharson, B., Dunham, P. 1983. Passive potassium transport in LK sheep red cells. Modification by N-ethyl maleimide.J. Gen. Physiol. 81:861–885

    PubMed  Google Scholar 

  • O'Neill, W.C. 1987. Volume-sensitive Cl-dependent K transport in human erythrocytes.Am. J. Physiol. 253:C883-C888

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Volume-responsive sodium movements in dog red blood cells.Am. J. Physiol. 244:C324-C330

    PubMed  Google Scholar 

  • Sarkadi, B., Mack, E., Rothstein, A. 1984a. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinction between volume-activated Cl and K+ conductance pathways.J. Gen. Physiol. 83:497–512

    PubMed  Google Scholar 

  • Sarkadi, B., Mack, E., Rothstein, A. 1984b. Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. II. Volume- and time-dependent activation and inactivation of ion transport pathways.J. Gen. Physiol. 83:513–527

    PubMed  Google Scholar 

  • Schmidt, W.F., McManus, T.J. 1977a. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions.J. Gen. Physiol. 70:59–79

    PubMed  Google Scholar 

  • Schmidt, W.F., McManus, T.J. 1977b. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport.J. Gen. Physiol. 70:81–97

    PubMed  Google Scholar 

  • Schmidt, W.F., McManus, T.J. 1977c. Ouabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response.J. Gen. Physiol. 70:99–121

    PubMed  Google Scholar 

  • Siebens, A.W., Kregenow, F.M. 1985. Volume regulatory responses ofAmphiuma red cells in anisotonic media. The effect of amiloride.J. Gen. Physiol. 86:527–564

    PubMed  Google Scholar 

  • Tosteson, D.C. 1967. Electrolyte composition and transport in red blood cells.Fed. Proc. 26:1805–1812

    PubMed  Google Scholar 

  • Ussing, H.H. 1978. Interpretation of tracer fluxes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. 1, p. 115–140. Springer-Verlag, Berlin

    Google Scholar 

  • Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cells.J. Clin. Invest. 53:745–755

    PubMed  Google Scholar 

  • Zade-Oppen, A.M.M., Lauf, P.K. 1987. Interior and exterior pH sensitivity of ouabain-resistant K+ transport in low K+ sheep red blood cells.J. Gen. Physiol. 90:44a (Abstr)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugnara, C. Characteristics of the volume- and chloride-dependent K transport in human erythrocytes homozygous for hemoglobin C. J. Membrain Biol. 111, 69–81 (1989). https://doi.org/10.1007/BF01869210

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869210

Key Words

Navigation