Skip to main content
Log in

Fusion of cultured dog kidney (MDCK) cells: I. Technique, fate of plasma membranes and of cell nuclei

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The evaluation of the intracellular signal train and its regulatory function in controlling transepithelial transport with electrophysiological methods often requires intracellular measurements with microelectrodes. However, multiple impalements in epithelial cells are hampered by the small size of the cells. In an attempt to avoid these problems we fused cells of an established cell line, Madin Darby canine kidney cells, originally derived from dog kidney, to “giant” cells by applying a modified polyethylene glycol method. During trypsin-induced detachment from the ground of the petri dish, individual cells grown in a monolayer incorporate volume and mainly lose basolateral plasma membrane by extrusion. By isovolumetric cell-to-cell fusion, spherical “giant” cells are formed within 2 hr. During this process a major part of the individual cell plasma membranes is internalized. Over three weeks following cell plasma membrane fusion degradation of single cell nuclei and cell nuclear fusion occurs. We conclude that this experimental approach opens the possibility to investigate ion transport of epithelia in culture by somatic cell genetic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, S.K., Karnovsky, M.J. 1972. An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections.J. Histochem. Cytochem. 20:225–228

    PubMed  Google Scholar 

  2. Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature (London) 312:315–321

    Google Scholar 

  3. Bouachour, G., Planelles, G., Anagnostopoulos, T. 1988. Fusion of amphibian proximal convoluted cells into giant cells.Pfluegers Arch. 411:220–222

    Google Scholar 

  4. Boulpaep, E.L. 1976. Electrical phenomena in the nephron.Kidney Int. 9:88–102

    PubMed  Google Scholar 

  5. Cereijido, M., Ehrenfeld, J., Fernandez-Castelo, S., Meza, I. 1981. Fluxes, junctions, and blisters in cultured monolayers of epithelioid cells (MDCK).Ann N.Y. Acad. Sci. 372:422–441

    PubMed  Google Scholar 

  6. Dietl, P., Wang, W., Oberleithner, H. 1987. Fused cells of frog proximal tubule: I. Basic membrane properties.J. Membrane Biol. 100:43–51

    Google Scholar 

  7. Frömter, E. 1984. Viewing the kidney through microelectrodes.Am. J. Physiol. 247:F695-F705

    PubMed  Google Scholar 

  8. Giebisch, G. 1987. Transport of electrolytes across renal tubules.In: Renal Physiology: People and Ideas. C.W. Gottschalk, R.W. Berliner and G.H. Giebisch, editors. pp. 165–216. American Physiological Society, Bethesda, MD

    Google Scholar 

  9. Graham, R.C., Karnovsky, M.J. 1966. The early stage of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique.J. Histochem. Cytochem. 14:291–302

    PubMed  Google Scholar 

  10. Handler, J.S., Perkins, F.M., Johnson, J.P. 1980. Studies of renal cell function using cell culture techniques.Am. J. Physiol. 238:F1-F9

    PubMed  Google Scholar 

  11. Hannun, Y.A., Bell, R.M. 1988. Aminoacridines, potent inhibitors of protein kinase C.J. Biochem. Chem. 263:5124–5131

    Google Scholar 

  12. Harris, H., Watkins, J.F. 1965. Hybrid cells derived from mouse and man: Artificial heterokaryons of mammalian cells from different species.Nature (London) 205:640–646

    Google Scholar 

  13. Holthöfer, H., Virtanen, I., Pettersson, E., Törnroth, T., Alfthan, O., Linder, E., Miettinen, A. 1981. Lectins as fluorescence microscopic markers for saccharides in the human kidney.Lab. Invest. 45:391–399

    PubMed  Google Scholar 

  14. Karst, W., Merker, H.J. 1988. The differentiation behaviour of MDCK cells grown on matrix components and in collagen gels.Cell Differ. 22:211–224

    PubMed  Google Scholar 

  15. Knutton, S. 1979. Studies of membrane fusion: III. Fusion of erythrocytes with polyethylene glycol.J. Cell. Sci. 36:61–72

    PubMed  Google Scholar 

  16. Köhler, G., Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity.Nature (London) 256:495–497

    Google Scholar 

  17. Le Hir, M., Dubach, U.C. 1982. The cellular specificity of lectin binding in the kidney: II. A light microscopical study in the rabbit.Histochemistry 74:531–540

    PubMed  Google Scholar 

  18. Madin, S.H., Darby, N.B., Jr. 1958. CCL-34,as cataloged in: American Type Culture collection Catalogue of Strains. H.O. Hatt, editor. 1975, Vol. 2, p. 47. Library of Congress, Rockville, Maryland

    Google Scholar 

  19. Markwell, M.A.K., Fredman, P., Svennerholm, L. 1984. Receptor ganglioside content of three hosts for sendai virus: MDBK, Hela and MDCK cells.Biochim. Biophys. Acta 775:7–16

    PubMed  Google Scholar 

  20. Nelson, W.J., Veshnock, P.J. 1987. Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin Darby canine kidney epithelial cells.J. Cell Biol. 104:1527–1537

    PubMed  Google Scholar 

  21. Oberleithner, H., Kersting, U., Silbernagl, S., Steigner, W., Vogel, U. 1989. Fusion of cultured dog kidney (MDCK) cells: II. Relationship between cell pH and K+ conductance in response to aldosterone.J. Membrane Biol. 111:49–56

    Google Scholar 

  22. Oberleithner, H., Schmidt, B., Dietl, P. 1986. Fusion of renal epithelial cells: A model for studying cellular mechanisms of ion transport.Proc. Natl. Acad. Sci. USA 83:3547–3551

    PubMed  Google Scholar 

  23. Oberleithner, H., Weigt, M., Westphale, H.J., Wang, W. 1987. Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney.Proc. Natl. Acad. Sci. USA 84:1464–1468

    PubMed  Google Scholar 

  24. Paulmichl, M., Gstraunthaler, G., Lang, F. 1985. Electrical properties of Madin-Darby canine kidney cells. Effects of extracellular potassium and bicarbonate.Pfluegers Arch. 405:102–107

    Google Scholar 

  25. Rindler, M.J., Chuman, L.M., Shaffer, L., Saier, M.H., Jr. 1979. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK).J. Cell Biol. 81:635–648

    PubMed  Google Scholar 

  26. Roos, D.S., Davidson, R.L., Choppin, P.W. 1987. Control of membrane fusion in polyethylene glycol-resistant cell mutants: Applications to fusion technology.In: Cell Fusion. A.E. Sowes, editor. pp. 123–144. Plenum, New York

    Google Scholar 

  27. Saier, M.H., Jr. 1981. Growth and differentiated properties of a kidney epithelial cell line (MDCK).Am. J. Physiol. 240:C106-C109

    PubMed  Google Scholar 

  28. Seglen, P.O. 1973. Preparation of rat liver cells: II. Effects of ions and chelators on tissue dispersion.Exp. Cell Res. 76:25–30

    PubMed  Google Scholar 

  29. Simmons, K. 1987. Membrane traffic in an epithelial cell line derived from the dog kidney.Kidney Int. 32:201–207

    Google Scholar 

  30. Simmons, N.L. 1984. Epithelial cell volume regulation in hypotonic fluids: Studies using a model tissue culture renal epithelial cell system.Q. J. Exp. Physiol. 69:83–95

    PubMed  Google Scholar 

  31. Spring, K.R. 1985. The study of epithelial function by quantitative light microscopy.Pfluegers Arch. 405:S23-S27

    Google Scholar 

  32. Stewart, W.W. 1981. Lucifer dyes—highly fluorescent dyes for biological tracing.Nature (London) 292:17–21

    Google Scholar 

  33. Taub, M. 1985. Importance of homonally defined, serumfree medium for in vitro studies concerning epithelial transport.In: Tissue Culture of Epithelial Cells. M. Taub, editor, pp. 255–276. Plenum, New York

    Google Scholar 

  34. Wang, W., Wang, Y., Silbernagl, S., Oberleithner, H. 1988. Fused cells of frog proximal tubule: II. Voltage-dependent intracellular pH.J. Membrane Biol. 101:259–265

    Google Scholar 

  35. Westerwoudt, R.J. 1985. Improved fusion methods: IV. Technical aspects.J. Immunol. Methods 77:181–196

    PubMed  Google Scholar 

  36. Willingham, M.C., Rutherford, A.V. 1984. The use of osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods to enhance membrane contrast and preservation in cultured cells.J. Histochem. Cytochem. 32:455–460

    PubMed  Google Scholar 

  37. Windhager, E.E. 1987. Micropuncture and microperfusion.In: Renal Physiology: People and Ideas. C.W. Gottschalk, R.W. Berliner, and G.H. Giebisch, editors. pp. 101–129. American Physiological Society, Bethesda, MD

    Google Scholar 

  38. Zimmermann, V., Vienken, J. 1982. Electric field-induced cell-to-cell fusion.J. Membrane Biol. 67:165–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersting, U., Joha, H., Steigner, W. et al. Fusion of cultured dog kidney (MDCK) cells: I. Technique, fate of plasma membranes and of cell nuclei. J. Membrain Biol. 111, 37–48 (1989). https://doi.org/10.1007/BF01869207

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869207

Key Words

Navigation