The Journal of Membrane Biology

, Volume 78, Issue 2, pp 119–127 | Cite as

Ion permeability of rabbit intestinal brush border membrane vesicles

  • Robert D. Gunther
  • Richard E. Schell
  • Ernest M. Wright


The ion permeability of rabbit jejunal brush border membrane vesicles was studied by measuring unidirectional fluxes with radioactive tracers and bi-ionic diffusion potentials with the potential-sensitive fluorescent dye, diS−C3-(5). Tracer measurements provide estimates of the absolute magnitudes of permeability coefficients, while fluorescence measurements provide estimates of relative and absolute ion permeabilities. The magnitudes of the permeability coefficients for Na+, K+, Rb+, and Br were approximately 5 nanoliters/(mg protein × sec) or 10−5 cm/sec as determined by radioactive tracer measurements. The apparent selectivity sequence, relative to Na+, as determined by bi-ionic potential measurements was: F, isetheionate, gluconate, choline (<0.1)<Na+(1.0)<Cl(1.5)=NO 3 (1.5)<Br(2.3)<K+(2.4)<Rb+(2.5)<Cs+(2.6)<Li+(3.9) <NH 4 +(12)<I(40). The origin of this selectivity sequence and its relationship to the ion permeability of the brush border membrane in the intact epithelium are discussed.

Key Words

ion permeability potential-sensitive cyanine dye intestinal brush border vesicles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerentsen, H.J., Christensen, O., Thomsen, P.G., Zeuthen, T. 1982. Steady states and the effects of ouabain in theNecturus gallbladder epithelium.J. Membrane Biol. 68:215–226Google Scholar
  2. Beck, J.C., Sacktor, B. 1978. Membrane potential-sensitive fluorescence changes during Na-dependentd-glucose transport in renal brush border membrane vesicles.J. Biol. Chem. 253:7158–7162Google Scholar
  3. Bindslev, N. 1979. Sodium transport in the hen lower intestine. Induction of sodium sites in the brush border by a low sodium diet.J. Physiol. (London) 288:449–466Google Scholar
  4. Cohen, L.B., Salzberg, B.M. 1978. Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35–88Google Scholar
  5. Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and non-electrolyte selectivity.Annu. Rev. Physiol. 31:581–646Google Scholar
  6. Eisenman, G., Margalit, R., Kuo, K.H. 1981. The ability of the peptide backbone to bind anions as well as cationsimplications for peptide carriers, channels and electrodes.In: Progress in Enzyme and Ion-Selective Electrodes. D.W. Lübbers, H. Acker, R.P. Buck, G. Eisenman, M. Kessler and W. Simon editors. pp. 1–8. Springer-Verlag, BerlinGoogle Scholar
  7. Frizzell, R.A., Nellans, H.N., Rose, R.C., Markscheid-Kaspi, L., Schultz, S.G. 1973. Intracellular Cl concentrations and influxes across the brush border of rat ileum.Am. J. Physiol. 224:328–337Google Scholar
  8. Gögelein, H., Driessche, W. van 1981. Noise analysis of the K+ current through the apical membrane ofNecturus gallbladder.J. Membrane Biol. 63:243–254Google Scholar
  9. Goldner, A.M., Schultz, S.G., Curran, P.F. 1969. Sodium and sugar fluxes across the brush border of rabbit ileum.J. Gen. Physiol. 53:362–383Google Scholar
  10. Gunther, R.D., Schell, R., Krasne, S., Wright, E.M. 1982. Ion permeability of jejunal brush border membranes measured with a potential sensitive dye and with radioactive tracers.Physiologist 25:335Google Scholar
  11. Gunther, R.D., Wright E.M. 1983. Na+, Li+ and Cl transport by brush border membranes from rabbit jejunum.J. Membrane Biol. 74:85–94Google Scholar
  12. Harms, V., Wright, E.M. 1980. Some characteristics of Na/K-ATPase from rat intestinal basal lateral membranes.J. Membrane Biol. 53:119–128Google Scholar
  13. Kaunitz, J.D., Gunther, R.D., Wright, E.M. 1982. Involvement of multiple sodium ions in intestinald-glucose transport.Proc. Natl. Acad. Sci. USA 79:2315–2318Google Scholar
  14. Krasne, S. 1978. Ion selectivity in membrane permeation.In: Physiology of Membrane Disorders. T.E. Andreoli, J.F. Hoffman and D.D. Fanestil, editors. pp. 217–242. Plenum, New York, LondonGoogle Scholar
  15. Reuss, L., Chung, L.Y., Grady, T.P. 1981. Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: Effects of luminal pH and divalent cations on K+ and Na+ permeability.J. Membrane Biol. 59:211–224Google Scholar
  16. Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworths, LondonGoogle Scholar
  17. Schell, R.E., Stevens, B.R., Wright, E.M. 1983. Kinetics of Na-dependent solute transport by rabbit renal and jejunal brush border vesicles using a fluorescent dye.J. Physiol. (London) 335:307–318Google Scholar
  18. Stevens, B.R., Wright, S.H., Hirayama, B., Ross, H.J., Gunther, R.D., Nord, E., Kippen, I., Harms, V.K., Wright, E.M. 1982. Liquid nitrogen preservation of organic and inorganic solute transport in renal and intestinal membrane vesicles.Membr. Biochem. 4:271–281Google Scholar
  19. Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng 8:47–68Google Scholar
  20. Wright, E.M., Diamond, J.M. 1977. Anion selectivity in biological systems.Physiol. Rev. 57:109–156Google Scholar
  21. Wright, S.H., Krasne, S., Kippen, I., Wright, E.M. 1981. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential sensitive cyanine dye.Biochim. Biophys. Acta 640:767–778Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • Robert D. Gunther
    • 1
  • Richard E. Schell
    • 1
  • Ernest M. Wright
    • 1
  1. 1.Department of PhysiologyUCLA School of MedicineLos Angeles

Personalised recommendations