Skip to main content
Log in

The total electrostatic potential in a gramicidin channel

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This paper describes a parameter free model of the electrostatic structure of gramicidin channels incorporated into uncharged lipid bilayer membranes. The electrical potential due to all sources is calculated for singly and doubly occupied channels. The model is consistent with all channel properties that are elearly dependent on coulombic interactions. The calculated value of the translocation rate constant and of the binding constant ratio for single and double occupancy are in excellent accord with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A. 1965. Handbook of Mathematical Functions. pp. 587–606. Dover, New York

    Google Scholar 

  • Andersen, O.S. 1978. Ion transport across simple membranes.In: Renal Function. G.H. Giebisch and E. Purcell, editors. pp. 71–99. Independent, Port Washington, N.Y.

    Google Scholar 

  • Andersen, O.S., Procopio, J., 1980. Ion movement through gramicidin A channels. On the importance of the aqueous diffusion resistance and ion-water interactions.Acta Physiol. Scand. Suppl. 481:27–35

    Google Scholar 

  • Anderson, O.S. 1983. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step.Biophys. J. 41:147–165

    Google Scholar 

  • Bamberg, E., Apell, H.J., Alpes, H. 1977. Structure of the β helix gramicidin A channel: Discrimination between πL.D. and the β helix by electrical measurements with lipid bilayer membranes.Proc. Natl. Acad. Sci. USA 74:2402–2406

    Google Scholar 

  • Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127–133

    Google Scholar 

  • Benz, R., Fröhlich, O., Läuger, P., Montal, M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers.Biochim. Biophys. Acta 394:323–334

    Google Scholar 

  • Dani, J.A., Levitt, D.G. 1981. Water transport and ion-water interaction in the gramicidin channel.Biophys. J. 35:501–508

    Google Scholar 

  • Diamond, J.M., Wright, E.M. 1969. Biological Membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581–646

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2s: 259–323

    Google Scholar 

  • Finkelstein, A., Andersen, O.S. 1981. The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport. (Topical Review).J. Membrane Biol. 59:155–171

    Google Scholar 

  • Fischer, W., Brickman, J., Läuger, P., 1981. Molecular dynamics study of ion transport in transmembrane protein channels.Biophys. Chem. 13:105–116

    Google Scholar 

  • Friedman, H.L., 1967. Regularities and specific effects in enthalpies of transfer from water to aprotic solvents.J. Phys. Chem. 71:1723–1726

    Google Scholar 

  • Guggenheim, E.A. 1929. The conceptions of electrical potential difference between two phases and the individual activities of ions.J. Phys. Chem. 33:842–849

    Google Scholar 

  • Guggenheim, E.A. 1930. On the conception of electrical potential difference between two phases. II.J. Phys. Chem. 34:1540–1543

    Google Scholar 

  • Haydon, D.A. 1975. Functions of the lipid in bilayer ion permeability.Ann. N.Y. Acad. Sci. 264:2–16

    Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1973. Membrane conductance and surface potential.Biochim. Biophys. Acta 318:464–468

    Google Scholar 

  • Jordan, P.C. 1979. Chemical Kinetics and Transport. Ch.9. Plenum, New York

    Google Scholar 

  • Jordan, P.C. 1981. Energy barriers for the passage of ions through channels. Exact solution of two electrostatic problems.Biophys. Chem. 13:203–212

    Google Scholar 

  • Jordan, P.C. 1982. Electrostatic modeling of ion pores. Energy barriers and electric field profiles.Biophys. J. 39:157–164

    Google Scholar 

  • Jordan, P.C. 1983. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential.Biophys. J. 41:189–195

    Google Scholar 

  • Kebarle, P. 1977. Ion thermochemistry and solvation from gas phase ion equilibrium.Annu. Rev. Phys. Chem. 28:445–476

    Google Scholar 

  • Koeppe, R.E., Berg, J.M., Hodgson, K.O., Stryer, L. 1979. Gramicidin A crystals contain two cation binding sites per channel.Nature (London) 279:723–725

    Google Scholar 

  • Koeppe, R.E., Hodgson, K.O., Stryer, L. 1978. Helical channels in crystals of gramicidin A and of a cesium-gramicidin A complex: An X-ray diffraction study.J. Mol. Biol. 121:41–54

    Google Scholar 

  • Koeppe, R.E., Kimura, M. 1983. Computer building of β-helical polypeptide models.Biopolymers (in press)

  • Kolb, H.A., Bamberg, E. 1977. Influence of membrane thickness and ion concentration on the properties of the gramicidin A channel. Autocorrelation, spectral power density, relaxation and single channel studies.Biochim. Biophys. Acta 464:127–141

    Google Scholar 

  • Krasne, S., Eisenman, G. 1973. The molecular basis of ion selectivity.In: Membranes, A Series of Advances. G. Eisenman, editor. Vol. 2, pp. 277–328. Marcel Dekker, New York

    Google Scholar 

  • Krishnan, C.V., Friedman, H. 1971. Solvation enthalpies in methanol and dimethylformamide.J. Phys. Chem. 75:3606–3612

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A ratetheory analysis.Biochim. Biophys. Acta 311:423–441

    Google Scholar 

  • Levitt, D.G. 1978a. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.Biophys. J. 22:209–219

    Google Scholar 

  • Levitt, D.G. 1978b. Electrostatic calculations for an ion channel. II. Kinetic behavior of the gramicidin A channel.Biophys. J. 22:221–248

    Google Scholar 

  • Levitt, D.G., Elias, S.R., Hautman, J.M. 1978. Number of water molecules coupled to the transport of sodium, potassium and hydrogen ions via gramicidin, nonactin or valinomycin.Biochim. Biophys. Acta 512:436–451

    Google Scholar 

  • McLaughlin, S.A. 1977. Electrostatic potentials of membrane-solution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  • Paltauf, F., Hauser, H., Phillips, M.C. 1971. Monolayer characteristics of some 1,2-diacyl, 1-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water surface.Biochim. Biophys. Acta 249:539–547

    Google Scholar 

  • Parsegian, V.A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature (Lond.) 221:944–946

    Google Scholar 

  • Parsegian, V.A. 1975. Ion-membrane interactions as structural forces.Ann. N.Y. Acad. Sci. 264:161–174

    Google Scholar 

  • Pauling, L. 1960. The Nature of the Chemical Bond, 3rd Ed., pp. 514–518. Cornell University Press, Ithaca, N.Y.

    Google Scholar 

  • Pickar, A.D., Benz, R. 1978. Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures.J. Membrane Biol. 44:353–376

    Google Scholar 

  • Plowman, K.M. 1977. Enzyme Kinetics; pp. 30–38, 156–164. McGraw-Hill, New York

    Google Scholar 

  • Randles, J.E.B. 1956. The real hydration energy of ions.Trans. Faraday Soc. 52:1573–1581

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978a. Interactions of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes.J. Gen. Physiol. 72:327–340

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978b. Water permeability of gramicidin A-treated lipid bilayer membranes.J. Gen. Physiol. 73:141–350

    Google Scholar 

  • Schulz, G.E., Schirmer, R.H. 1978. Principles of Protein Structure. p. 30. Springer, New York

    Google Scholar 

  • Tredgold, R.H. 1979. On the potential variation in the gramicidin channel.Biophys. J. 25:373–378

    Google Scholar 

  • Tredgold, R.H., Hole, P.N. 1976. Dielectric behaviour of dry synthetic polypeptides.Biochim. Biophys. Acta 443:137–142

    Google Scholar 

  • Urban, B.W., Hladky, S.B., Haydon, D.A. 1980. Ion movement in gramacidin pores. An example of single-file transport.Biochim. Biophys. Acta 602:331–354

    Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposed π(L.D.).Proc. Natl. Acad. Sci. USA 68:672–676

    Google Scholar 

  • Urry, D.W., Venkatachalam, C.M., Spisni, A., Bradley, R.J., Trapani, T.L., Prasad, K.U. 1980b. The malonyl gramicidin channel: NMR-derived rate constants and comparison of calculated and experimental single-channel currents.J. Membrane Biol. 55:29–51

    Google Scholar 

  • Urry, D.W., Venkatachalam, C.S., Spisni, A., Läuger, P., Khalid, M.A. 1980a. Rate theory calculation of gramicidin single channel currents using NMR-derived rate constants.Proc. Natl. Acad. Sci. USA 77:2028–2032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, P.C. The total electrostatic potential in a gramicidin channel. J. Membrain Biol. 78, 91–102 (1984). https://doi.org/10.1007/BF01869197

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869197

Key Words

Navigation