The Journal of Membrane Biology

, Volume 27, Issue 1, pp 233–250 | Cite as

Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions

  • J. F. Nagle
Article

Summary

Headgroup and soft core interactions are added to a lipid monolayer-bilayer model and the surface pressure-area phase diagrams are calculated. The results show that quite small headgroup interactions can have biologically significant effects on the transition temperature and the phase diagram. In particular, the difference in transition temperatures of lecithins and phosphatidyl ethanolamines is easy to reproduce in the model. The phosphatidic acid systems seem to require weak transient hydrogen bonding which is also conjectured to play a role in most of the lipid systems. By a simple surface free energy argument it is shown that monolayers under a surface pressure of 50 dynes/cm should behave as bilayers, in agreement with experiment. Although the headgroup interactions are biologically very significant, in fundamental studies of the main phase transition in lipids they are secondary in importance to the hydrocarbon chain interactions (including the excluded volume interaction, the rotational isomerism, and the attractive van der Waals interaction).

Keywords

Lecithin Phosphatidyl Ethanolamine Surface Free Energy Phosphatidic Acid Soft Core 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, A.E. 1942. The role of hydrogen bonds in condensed monolayers.Proc. Roy. Soc. London A 179:470Google Scholar
  2. 2.
    Cater, B.R., Chapman, D., Hawes, S.M., Saville, J. 1974. Lipid phase transitions and drug interactions.Biochim. Biophys. Acta 363:54PubMedGoogle Scholar
  3. 3.
    Coulson, C.A. 1961. Valence. Oxford University Press, p. 353Google Scholar
  4. 4.
    Devaux, P., McConnell, H.M. 1972. Lateral diffusion in spin-labeled phosphatidylcholine multilayers.J. Am. Chem. Soc. 94:4475PubMedGoogle Scholar
  5. 5.
    Gaines, G.L. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. Wiley, New YorkGoogle Scholar
  6. 6.
    Hui, S.W., Cowden, M., Papahadjopoulos, D., Parsons, D.F. 1975. Electron diffraction study of hydrated phospholipid single bilayers.Biochim. Biophys. Acta 382:265PubMedGoogle Scholar
  7. 7.
    Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152PubMedGoogle Scholar
  8. 8.
    Marcelja, S. 1974. Chain ordering in liquid crystals. II. Structure of bilayer membranes.Biochim. Biophys. Acta 367:165PubMedGoogle Scholar
  9. 9.
    Marsh, D. 1974. Statistical mechanics of the fluidity of phospholipid bilayers and membranes.J. Membrane Biol. 18:145Google Scholar
  10. 10.
    McConnell, H.M., McFarland, B. 1972. The flexibility gradient in biological membranes.Ann. N. Y. Acad. Sci. 195:207PubMedGoogle Scholar
  11. 11.
    Melchior, D.L., Morowitz, H.J. 1972. Dilatometry of dilute suspensions of synthetic lecithin aggregates.Biochemistry 11:4558PubMedGoogle Scholar
  12. 12.
    Michaelson, D.M., Horwitz, A.F., Klein, M.P. 1974. Head group modulation of membrane fluidity in sonicated phospholipid dispersions.Biochemistry 13:2605PubMedGoogle Scholar
  13. 13.
    Nagle, J.F. 1973a. Theory of biomembrane phase transitions.J. Chem. Phys. 58:252Google Scholar
  14. 14.
    Nagle, J.F. 1973b. Lipid bilayer phase transition: Density measurements and theory.Proc. Nat. Acad. Sci. USA 70:3443PubMedGoogle Scholar
  15. 15.
    Nagle, J.F. 1974. Statistical mechanics of the melting transition in lattice models of polymers.Proc. R. Soc. London, Ser. A 337:569Google Scholar
  16. 16.
    Nagle, J.F. 1975. Critical points for dimer models with 3/2-order transitions.Phys. Rev. Lett. 34:1150Google Scholar
  17. 17.
    Nagle, J.F. 1975. Chain model theory of lipid monolayer transitions.J. Chem. Phys. 63:1255Google Scholar
  18. 18.
    Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 13:881Google Scholar
  19. 19.
    Oldani, D., Hauser, H., Nichols, B.W., Phillips, M.C. 1975. Monolayer characteristics of some glycolipids at the air-water interface.Biochim. Biophys. Acta 382:1PubMedGoogle Scholar
  20. 20.
    Onsager, L. 1944. Crystal statistics. I. A two-dimensional model with an order-disorder transition.Phys. Rev. 65:117Google Scholar
  21. 21.
    Phillips, M.C., Cadenhead, D.A., Good, R.J., King, H.F. 1971. Dipole interactions in monomolecular layers.J. Colloid Interface Sci. 37:437Google Scholar
  22. 22.
    Phillips, M.C., Chapman, D. 1968. Monolayer characteristics of saturated lecithins and phosphatidylethanolamines at the air-water interface.Biochim. Biophys. Acta 163:301PubMedGoogle Scholar
  23. 23.
    Phillips, M.C., Finer, E.G., Hauser, H. 1972. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes.Biochim. Biophys. Acta 290:397PubMedGoogle Scholar
  24. 24.
    Phillips, M.C., Graham, D.E., Hauser, H. 1975. Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes.Nature 254:154PubMedGoogle Scholar
  25. 25.
    Poste, G., Papahadjopoulos, D., Jacobson, K., Vail, W.J. 1975. Local anaesthetics increase susceptibility of untransformed cells to agglutination by concanavalin A.Nature 253:552PubMedGoogle Scholar
  26. 26.
    Scott, H.L. 1974. A model for phase transitions in lipid bilayers and biological membranes.J. Theor. Biol. 46:241PubMedGoogle Scholar
  27. 27.
    Scott, H.L. 1975. Some models for lipid bilayer and biomembrane phase transitions.J. Chem. Phys. 62:1347Google Scholar
  28. 28.
    Srinivasan, K.R., Kay, R.L., Nagle, J.F. 1974. The pressure dependence of the lipid bilayer phase transition.Biochemistry 13:3494PubMedGoogle Scholar
  29. 29.
    Shimshick, E.J., McConnell, H.M. 1973. Lateral phase separation in phospholipid membranes.Biochemistry 12:2351Google Scholar
  30. 30.
    Simon, S.A., Lis, L.J., Kauffman, J.W., MacDonald, R.C. 1975. A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine.Biochim. Biophys. Acta 375:317PubMedGoogle Scholar
  31. 31.
    Singer, S.J., Nicolson, G.L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720PubMedGoogle Scholar
  32. 32.
    Tardieu, A., Luzzati, V., Reman, F.C. 1973. Structure and polymorphism of the hydrocarbon chains of lipids.J. Mol. Biol. 75:711PubMedGoogle Scholar
  33. 33.
    Tien, H. Ti 1968. The thermodynamics of bimolecular (black) lipid membranes at the water-oil-water biface.J. Phys. Chem. 72:2723PubMedGoogle Scholar
  34. 34.
    Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions.Proc. Nat. Acad. Sci. USA 71:214PubMedGoogle Scholar
  35. 35.
    Trudell, J.R., Payan, D.G., Chin, J.H., Cohen, E.N. 1975. The antagonistic effect of an inhalation anaesthetic and high pressure on the phase diagram of mixed bilayers.Proc. Nat. Acad. Sci. USA 72:210PubMedGoogle Scholar
  36. 36.
    Vaughan, D.J., Keough, K.M. 1974. Changes in phase transitions of phosphatidyl-ethanolamine and phosphatidylcholine water dispersions induced by small modifications in the headgroup and backbone regions.FEBS Lett. 47:158PubMedGoogle Scholar
  37. 37.
    Verkleij, A.J., de Kruyff, B., Ververgaert, P.H.J.Th., Tocanne, J.F., Van Deenen, L.L.M. 1974. The influence of pH, Ca++ and protein on the thermotropic behavior of phosphatidylglycerol.Biochim. Biophy. Acta 339:432Google Scholar
  38. 38.
    Vilallonga, F. 1968. Surface chemistry ofl-α-dipalmitoyl lecithin at the air-water interface.Biochim. Biophys. Acta 163:290PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • J. F. Nagle
    • 1
  1. 1.Physics and Biological Sciences DepartmentsCarnegie-Mellon UniversityPittsburgh

Personalised recommendations