Skip to main content
Log in

Effect of FeCl3 on ion transport in isolated frog skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effect of addition of FeCl3 to the media bathing the isolated skin ofRana pipiens was studied by measuring short-circuit current, transepithelial potential, and resistance, and by determining the influx and efflux of sodium (J Na13 andJ Na31 , respectively) and the influx and efflux of chloride (J Cl13 andJ Cl31 , respectively) across the epithelium. With normal Ringer's solution on both sides of the skin, addition of 10−3 m FeCl3 to the external medium resulted in nearly complete inhibition of active Na transport (J Na13 decreased from 1.30±0.14 to 0.10±0.04 μeq/cm2 hr (N=8)) and in appearance of active chloride transport in outward direction due to an 80% increase inJ Cl31 . Average (J Cl31 J Cl13 ) obtained from means of 8 skins in 6 consecutive control and last 3 experimental periods was −0.17±0.04 and 0.38±0.05 μeq/cm2 hr, respectively. FeCl3 added to external medium also induced substantial net chloride movement in outward direction when external medium contained Na-free choline chloride Ringer's or low ionic strength solution. Under the latter condition net Na movement was virtually eliminated by external FeCl3. After addition of FeCl3 to serosal medium there was delayed inhibition ofJ Na13 but no change in chloride fluxes. Immediate and profound changes in Na and Cl transport systems seen after external application of FeCl3 indicate charge effects of Fe3+ on surface of apical cell membranes, possibly close to or in ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benos, D.J., Simon, S.A., Mandel, L.J., Cala, P.M. 1976. Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes.J. Gen. Physiol. 68:43

    PubMed  Google Scholar 

  2. Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  3. Biber, T.U.L., Cruz, L.J. 1973. Effect of antidiuretic hormone on sodium uptake across outer surface of frog skin.Am. J. Physiol. 225:912

    PubMed  Google Scholar 

  4. Biber, T.U.L., Curran, P.F. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83

    PubMed  Google Scholar 

  5. Biber, T.U.L., Mullen, T.L. 1977. Effect of inhibitors on transepithelial efflux on Na and nonelectrolytes in frog skin.Am. J. Physiol. 237:C67

    Google Scholar 

  6. Biber, T.U.L., Mullen, T.L. 1980. The effect of external cation and anion substitutions on sodium transport in isolated frog skin.J. Membrane Biol. 52:121

    Google Scholar 

  7. Biber, T.U.L., Sanders, M.L. 1973. Influence of transepithelial potential difference on the sodium uptake of the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529

    PubMed  Google Scholar 

  8. Bunow, B., DeSimone, J.A. 1977. How is metabolic energy coupled to active transportIn: Proceedings of Symposium on Biophysics of Membrane Transport. p. 105. Wroclow University, Wroclow, Poland

    Google Scholar 

  9. Cereijido, M., Herrera, F.C., Flanigan, W.J., Curran, P.F. 1964. The influence of Na concentration or Na transport across frog skin.J. Gen. Physiol. 47:879

    PubMed  Google Scholar 

  10. Cotton, F.A., Wilkinson, G.W. 1962. Advanced Inorganic chemistry. Interscience, New York

    Google Scholar 

  11. Cruz, L.T., Biber, T.U.L. 1976. Transepithelial transport kinetics and Na entry in frog skin: Effects of novobiocin.Am. J. Physiol. 231:1866

    PubMed  Google Scholar 

  12. DeSimone, J.A. 1977. Perturbations in the structure of the double layer at an enzyme surface.J. Theor. Biol. 68:225

    PubMed  Google Scholar 

  13. DeSousa, R.C. 1975. Mecanisms de transport de l'eau et du sodium per les cellules des epithelia d'amphibiens et du tubule renal isole.J. Physiol. (Paris) 71:5A

    Google Scholar 

  14. Diamond, T.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  15. Hajjar, T.T., Abu-Murad, C., Khuri, R.N., Nassar, R. 1975. Effect of Mn2+ on permeability properties of frog skinPfluegers Arch. 359:57

    Google Scholar 

  16. Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    PubMed  Google Scholar 

  17. Herman, T.S. 1974. Effect of lanthanum (LA) on epithelial transport in toad bladder.Fed. Proc. 33(3):239

    Google Scholar 

  18. Hillyard, S.D., Gonick, H.C. 1976. Effects of Cd++ on short-circuit current across epithelial membranes.J. Membrane Biol. 26:109

    Google Scholar 

  19. Koefoed-Johnsen, V., Levi, H., Ussing, H.H. 1952. The mode of passage of chloride ions through the isolated frog skin.Acta Physiol. Scand. 25:150

    PubMed  Google Scholar 

  20. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  21. Koefoed-Johnsen, V., Ussing, H.H., Zerahn, K. 1952. The origin of the short-circuit current in the adrenaline stimulated frog skin.Acta Physiol. Scand. 27:38

    PubMed  Google Scholar 

  22. Mullen, T.L., Biber, T.U.L. 1978. Sodium uptake across outer surface of frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. pp. 199–212. Raven Press, New York

    Google Scholar 

  23. Nagel, W. 1975. Reinvestigation of intracellular PD of frog skin epithelium.In: Abstracts of the 5th International Biophysics Congress. p. 147. Copenhagen

  24. Nagel, W. 1977. The dependence of the electrical potentials across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol. (London) 269:777

    Google Scholar 

  25. Pauling, L. 1959. The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  26. Pennline, T.A., DeSimone, J.A., Rosenbaum, T.S., Mikulecky, D.C. 1977. A nonlinear boundary value problem arising in the structure of the double layer at an enzymatic surface.Math. Biosci. 37:1

    Google Scholar 

  27. Rick, R., Dorge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313

    Google Scholar 

  28. Singer, I., Civan, M.M. 1971. Effect of anions on sodium transport in toad urinary bladder.Am. J. Physiol. 221:1019

    PubMed  Google Scholar 

  29. Tomlinson, R.W.S., Wood, A.W. 1978. Effect of amiloride on catecholamine-induced changes in ion transport in short-circuited frog skin.J. Membrane Biol. Special Issue: 135

  30. Wietzerbin, T., Goudeau, H., Gary-Bobo, C.M. 1977. Influence of membrane polarization and hormonal stimulation on the action of Lanthanum on frog skin sodium permeability.Pfluegers Arch. 370:145

    Google Scholar 

  31. Zeiske, W., Lindemann, B. 1975. Blockage of Na-channels in frog skin by titration with protons and by chemical modification of COO-groups.Pfluegers Arch. 355:R71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biber, T.U.L., Mullen, T.L. & DeSimone, J.A. Effect of FeCl3 on ion transport in isolated frog skin. J. Membrain Biol. 52, 133–139 (1980). https://doi.org/10.1007/BF01869118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869118

Keywords

Navigation