Skip to main content
Log in

Effect of external cation and anion substitutions on sodium transport in isolated frog skin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Effects of changes in external ionic strength, external cation and/or anion substitution on transepithelial influx and efflux of sodium, short-circuit current and on transepithelial potential difference and resistance were studied in isolated frog skin. Active transport of Na was found to be highly dependent on both anionic and cationic composition of external medium. Relative abilities of external monovalent cations to inhibit active Na transport were H>Li>K>Rb>Cs>choline. Relative abilities of external monovalent anions to stimulate active Na transport were I>Br>Cl. Sequences of anion interaction and of resistance changes suggest that anionic stimulation of Na transport is not due to electrical coupling across outer cell membrane. The ability of different anions and cations to alter Na transport suggests that externally located charged groups act as important barriers or filters to ion movement. In addition, the experiments suggest that an increase in ionic strength of external medium has an effect on active transport of Na, a finding that indicates interference of surface charges with Na entry. Directional changes in efflux of Na due to changes in ionic composition of external medium usually paralleled changes in active Na transport. It is possible that the observed relationship between influx and efflux of Na is the result of common pathways and of interaction of the active transport system with Na efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado, R.H., Dietz, T.H., Mullen, T.L. 1975. Chloride transport across isolated skin ofRana pipiens.Am. J. Physiol. 229:869

    PubMed  Google Scholar 

  • Alvarado, R.H., Poole, A.M., Mullen, T.L. 1975, Chloride balance inRana pipiens.Am. J. Physiol. 229:861

    PubMed  Google Scholar 

  • Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  • Biber, T.U.L., Cruz, L.J. 1973. Effect of antidiuretic hormone on sodium uptake across outer surface of the frog skin.Am. J. Physiol. 225:912

    PubMed  Google Scholar 

  • Biber, T.U.L., Curran, P.F. 1970. Direct measurements of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83

    PubMed  Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1976. Saturation kinetics of sodium efflux across isolated frog skin.Am. J. Physiol. 231:995

    PubMed  Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1977. Effect of inhibitors on transepithelial efflux of Na and nonelectrolytes in frog skin.Am. J. Physiol. 232:C67

    PubMed  Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1979. Transition from Na transport to Cl transport after exposure of external surface of frog skin to FeCl3.Physiologist 22(4):10

    Google Scholar 

  • Biber, T.U.L., Sanders, M.L. 1973. Influence of transepithelial potential difference on sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529

    PubMed  Google Scholar 

  • Boulpaep, E.L. 1976. Electrical phenomena in the nephron.Kidney Int. 9:88

    PubMed  Google Scholar 

  • Bruus, K., Kristensen, P., Larsen, E.H. 1976. Pathways for chloride and sodium transport across toad skin.Acta Physiol. Scand. 97:31

    PubMed  Google Scholar 

  • Chandler, W.K., Meves, H. 1965. Voltage clamp experiments on internally perfused giant axons.J. Physiol. (London) 180:788

    Google Scholar 

  • Cruz, L.J., Biber, T.U.L. 1976. Transepithelial transport kinetics and Na entry in frog skin. Effects of novobiocin.Am. J. Physiol. 231:1866

    PubMed  Google Scholar 

  • DeSimone, J.A., Heck, G.L., DeSimone, S.K. 1979. A surface chemical model of salt, acid and “water” taste.In: Bioelectrochemistry: Ions, Surfaces, Membranes. M. Blank, editor. American Chemical Society Symposia Series (in press)

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2:259

    PubMed  Google Scholar 

  • Ferreira, K.T.G. 1968. Anionic dependence of sodium transport in the frog skin.Biochim. Biophys. Acta 150:587

    PubMed  Google Scholar 

  • Hille, B. 1975. An essential ionized acid group in sodium channels.Fed. Proc. 34:1318

    PubMed  Google Scholar 

  • Huf, E.G. 1972. The role of Cl and other anions in active Na transport in isolated frog skin.Acta Physiol. Scand. 84:366

    PubMed  Google Scholar 

  • Huf, E.G., Howell, J.R. 1974. Computer simulation of sodium fluxes in frog skin epidermis.J. Membrane Biol. 15:47

    Google Scholar 

  • Kirschner, L.B. 1959. The interaction between sodium outflux and the sodium transport system in the frog skin.J. Cell. Comp. Physiol. 53:85

    PubMed  Google Scholar 

  • Kirschner, L.B. 1960. Permeability of frog skin to choline.Science 132:85

    PubMed  Google Scholar 

  • Kirschner, L.B. 1974. Electrolyte transport across the body surface of fresh water fish and amphibia.In: Alfred Benzon Symposium V. Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. Academic Press, New York

    Google Scholar 

  • Koblick, D.C. 1959. An enzymatic ion exchange model for active sodium transport.J. Gen. Physiol. 42:635

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  • Lindeman, B., Van Driesche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292

    PubMed  Google Scholar 

  • Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1972. Chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta 282:258

    PubMed  Google Scholar 

  • Mullen, T.L., Biber, T.U.L. 1978. Sodium uptake across outer surface of the frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. pp. 199–212. Raven Press, New York

    Google Scholar 

  • Nagel, W. 1977. Influence of lithium upon the intracellular potential of frog skin epithelium.J. Membrane Biol. 37:347

    Google Scholar 

  • Rotunno, C.A., Vilallonga, F.A., Fernandez, M., Cereijido, M. 1970. The penetration of sodium into the epithelium of the frog skin.J. Gen. Physiol. 55:716

    PubMed  Google Scholar 

  • Singer, I., Civan, M.M. 1971. Effect of anions on sodium transport in toad urinary bladder.Am. J. Physiol. 221:1019

    PubMed  Google Scholar 

  • Zeiske, W., Lindemann, B. 1975. Blockage of Na-channels in frog skin by titration with protons and by chemical modification of COO groups.Pfluegers Arch. 355:R71

    Google Scholar 

  • Zerahn, K. 1954. Studies on active transport of lithium in the isolated frog skin.Acta Physiol. Scand. 33:347

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biber, T.U.L., Mullen, T.L. Effect of external cation and anion substitutions on sodium transport in isolated frog skin. J. Membrain Biol. 52, 121–132 (1980). https://doi.org/10.1007/BF01869117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869117

Keywords

Navigation