The Journal of Membrane Biology

, Volume 114, Issue 2, pp 175–188 | Cite as

Patch-clamp profile of ion channels in resting murine B lymphocytes

  • Frances V. McCann
  • David C. McCarthy
  • Randolph J. Noelle


Patch-clamp studies of single ion channel currents in freshly isolated murine B lymphocytes are characterized here according to their respective unitary conductances, ion selectivities, regulatory factors, distributions and kinetic behavior. The most prevalent ion channel in murine B lymphocytes is a large conductance (348 pS) nonselective anion channel. This report characterizes additional conductances including: two chloride channels (40 and 128 pS), a calcium-activated potassium channel (93 pS), and an outwardly rectifying potassium channel which displays two distinct conductances (18 and 30 pS). Like the anion channel, both chloride channels exhibit little activity in the cellattached patch configuration. The kinetic behavior of all of these channels is complex, with variable periods of bursting and flickering activity interspersed between prolonged closed/open intervals (dwell times). It is likely that some of these channels play an important role in the signal transduction of B cell activation.

Key Words

anion channel potassium channel chloride channel patch clamp single-channel recording murine B lymphocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P.R., Constanti, A., Brown, D.A., Clark, R.B. 1982. Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones.Nature (London) 296:746–749Google Scholar
  2. Bailey, J.S., Siu, C. 1987. Purification and characterization of a murine cellular retinoic acid-binding protein.Biochem. Cell Biol. 66:750–757Google Scholar
  3. Blatz, A.L., Magleby, K.L. 1984. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle.J. Gen. Physiol. 84:1–23PubMedGoogle Scholar
  4. Blatz, A.L., Magleby, K.L. 1985. Single chloride selective channels active at resting membrane potentials in cultured rat skeletal muscle.Biophys. J. 47:119–123PubMedGoogle Scholar
  5. Bosma, M. 1989. Anion channels with multiple conductance levels in a mouse B lymphocyte cell line.J. Physiol. (London) 410:67–90Google Scholar
  6. Cahalan, M.D., Chandy, K.G., Decoursey, T.E., Gupta, S. 1985. A voltage-gated potassium channel in human T lymphocytes.J. Physiol. (London) 358:197–237Google Scholar
  7. Chandy, K.G., DeCoursey, T.E., Cahalan, M.D., Gupta, S. 1985. Ion channels in lymphocytes.J. Clin. Immunol. 5:1–5PubMedGoogle Scholar
  8. Chandy, K.G., DeCoursey, T.E., Cahalan, M.D., McLaughlin, C., Gupta, S. 1984. Voltage-gated potassium channels are required for human T lymphocyte activation.J. Exp. Med. 160:369–385PubMedGoogle Scholar
  9. Chen, J.H., Schulman, H., Gardner, P. 1989. A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis.Science 243:657–660PubMedGoogle Scholar
  10. Choquet, D., Korn, H. 1988. Dual effects of serotonin of a voltage-gated conductance in lymphocytes.Proc. Natl. Acad. Sci. USA 85:4557–4561PubMedGoogle Scholar
  11. Choquet, D., Sarthou, P., Primi, D., Cazenave, P.-A., Korn, H. 1987. Cyclic AMP-modulated potassium channels in murine B cells and their precursors.Science 235:1211–1214PubMedGoogle Scholar
  12. DeCoursey, T.E., Chandy, K.G., Gupta, S., Cahalan, M.D. 1984. Voltage-gated K+ channels in human T lymphocytes: A role in mitogenesis?Nature (London) 307:465–468Google Scholar
  13. DeCoursey, T.E., Chandy, K.G., Gupta, S., Cahalan, M.D. 1987. Mitogen induction of ion channels in murine T lymphocytes.J. Gen. Physiol. 89:405–420PubMedGoogle Scholar
  14. Deutsch, C., Krause, D., Lee, S.C. 1986. Voltage-gated potassium conductance in human T lymphocytes stimulated with phorbol ester.J. Physiol. (London) 372:405–423Google Scholar
  15. Ding-E Young, J., Nathan, C.F., Podack, E.R., Palladino, M.A., Cohen, Z.A. 1986. Functional channel formation associated with cytotoxic T-cell granules.Proc. Natl. Acad. Sci. USA 83:150–154PubMedGoogle Scholar
  16. Ding-E Young, J., Unkeless, J.C., Kaback, H.R., Cohn, Z.A. 1983a. Macrophage membrane potential changes associated with 2b/1Fc receptor-ligand binding.Proc. Natl. Acad. Sci. USA 80:1357–1361PubMedGoogle Scholar
  17. Ding-E Young, J., Unkeless, J.C., Young, T.M., Mauro, A., Cohn, Z. 1983b. Role for mouse macrophage IgG Fc receptor as ligand-dependent ion channel.Nature (London) 306:186–189Google Scholar
  18. Dorand, J., Moatassim, C., Mani, J.C. 1987. Amiloride-induced suppression of lymphocyte proliferation: Inhibition of IL2 receptor expression after blockade of early sodium influx.Immunobiology 174:365–379PubMedGoogle Scholar
  19. Fukushima, Y., Hagiwara, S. 1983. Voltage gated calcium channel in mouse myeloma cells.Proc. Natl. Acad. Sci. USA 80:2240–2242PubMedGoogle Scholar
  20. Fukushima, Y., Hagiwara, S. 1985. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes.J. Physiol. (London) 358:255–284Google Scholar
  21. Fukushima, Y., Hagiwara, S., Saxton, R.E. 1984. Variation of calcium current during cell growth cycle in mouse hybridoma lines secreting immunoglobulins.J. Physiol. (London) 355:313–321Google Scholar
  22. Gallin, E.K. 1984. Calcium- and voltage-activated potassium channels in human macrophages.Biophys. J. 46:821–825PubMedGoogle Scholar
  23. Gallin, E.K., Livengood, D.R. 1980. Nonlinear current-voltage relationships in cultured macrophages.J. Cell. Biol. 85:160–165PubMedGoogle Scholar
  24. Gallin, E.K., McKinney, L.C. 1988. Patch-clamp studies in human macrophages: Single-channel and whole cell characterization of two K+ conductances.J. Membrane Biol. 103:55–66Google Scholar
  25. Gelfand, E.W., Mills, G.B., Cheung, R.K., Lee, J.W.W., Grinstein, S. 1987. Transmembrane ion fluxes during activation of human T lymphocytes: Role of Ca2+, Na+/H+ exchange and phospholipid turnover.Immunol. Rev. 95:59–87PubMedGoogle Scholar
  26. Gray, L.S., Gnarra, J.R., Russell, J.H., Engelhard, V.H. 1989. The role of K+ in the regulation of the increase in intracellular Ca+ mediated by the T lymphocyte antigen receptor.Cell 50:119–127Google Scholar
  27. Greger, R., Schlatter, E., Gogelein, H. 1985. Cl-channels in the apical cell membrane of the rectal gland “induced” by cAMP.Pfluegers Arch. 403:446–448Google Scholar
  28. Grinstein, S., Clarke, C.A., Rothstein, A., Gelfand, E.W. 1983. Volume-induced anion conductance in human B lymphocytes is cation independent.Am. J. Physiol. 245:c160-c163Google Scholar
  29. Hille, B. 1984. Ionic Channels of Excitable Membranes. p. 18. Sinauer, SunderlandGoogle Scholar
  30. Hunter, M., Giebisch, G. 1987. Multi-barrelled K channels in renal tubules.Nature (London) 327:522–524Google Scholar
  31. Ince, C., Coremans, J.M.C.C., Ypey, D.L., Leijh, P.C.J., Verveen, A.A., van Furth, R. 1988. Phagocytosis by human macrophages is accompanied by changes in ionic channel currents.J. Cell Biol. 106:1873–1878PubMedGoogle Scholar
  32. Kanner, B.I., Metzger, H. 1984. Initial characterization of the calcium channel activated by the cross-linking of the receptors for immunoglobulin E.J. Biol. Chem. 259:10188–10193PubMedGoogle Scholar
  33. Krouse, M., Schneider, G.T., Gage, P.W. 1986. A large anion-selective channel has seven conductance levels.Nature (London) 319:58–60Google Scholar
  34. Kuno, M., Goronzy, J., Weyand, C.M., Gardner, P. 1986. Single-channel and whole-cell recordings of mitogen-regulated inward currents in human cloned helper T lymphocytes.Nature (London) 323:269–304Google Scholar
  35. Lee, S.C., Price, M., Prystowsky, M.B., Deutsch, C. 1988. Volume response of quiescent and interleukin 2 stimulated T-lymphocytes to hypotonicity.Am. J. Physiol. 254:C286-C296Google Scholar
  36. Lewis, R.S., Cahalan, M.D. 1988. Subset-specific expression of potassium channels in developing murine T lymphocytes.Science 239:771–775PubMedGoogle Scholar
  37. Macdougall, S.L., Grinstein, S., Gelfand, E.W. 1988a. Activation of Ca2+ dependent K+ channels in human B lymphocyes by anti-immunoglobulin.J. Clin. Invest. 81:449–454PubMedGoogle Scholar
  38. Macdougall, S.L., Grinstein, S., Gelfand, E.W. 1988b. Detection of ligand-activated conductive Ca2+ channels in human B lymphocytes.Cell 54:229–234PubMedGoogle Scholar
  39. McCann, F.V., Cole, J.J., Guyre, P.M., Russell, J.A.G. 1983. Action potentials in macrophages derived from human monocytes.Science 219:991–993PubMedGoogle Scholar
  40. McCann, F.V., Keller, T.M., Guyre, P.M. 1987a. Ion channels in human macrophages compared with the U-937 cell line.J. Membrane Biol. 96:57–64Google Scholar
  41. McCann, F.V., McCarthy, D.C., Keller, T.M., Noelle, R.J., 1989a. Characterization of a large conductance non-selective anion channel in B lymphocytes.Cell. Signal. 1:31–44PubMedGoogle Scholar
  42. McCann, F.V., McCarthy, D.C., Noelle, R.J. 1988b. Ion channel activity in B lymphocytes mediated by interleukin-4.J. Gen. Physiol. 94:39a-40a Google Scholar
  43. McCann, F.V., Stibitz, G.R., Keller, T.M. 1987b. A computer method for the acquisition and analysis of patch clamp single channel currents.J. Neurosci. Methods 20:45–55PubMedGoogle Scholar
  44. McKinnon, D., Ceredig, R. 1986. Changes in the expression of potassium channels during mouse T cell development.J. Exp. Med. 164:1846–1861PubMedGoogle Scholar
  45. Mikael, J., Janet, N., Maj-Britt, A. 1987. Direct induction of lymphocyte killing by calcium ionophore and phorbol ester treatment.Cell. Immunol. 105:23–32PubMedGoogle Scholar
  46. Monroe, J.G., Cambier, J.C. 1983. B cell activation. I. Antiimmunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes.J. Exp. Med. 157:2073–2086PubMedGoogle Scholar
  47. Nelson, D.J., Tang, J.M., Palmer, L.G. 1984. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells.J. Membrane Biol. 80:81–89Google Scholar
  48. Ng, J., Fredholm, B.B., Jondal, M. 1987. Studies on the calcium dependence of human NK cell killing.Biochem. Pharmacol. 36:3953–3949Google Scholar
  49. Palmer, L.G., Frindt, G. 1986. Amiloride-sensitive Na+ channels from the apical membrane of the rat cortical collecting tubule.Proc. Natl. Acad. Sci. USA 83:2767–2770PubMedGoogle Scholar
  50. Pecht, I., Corcia, A., Liuzzi, M.P.T., Alcover, A., Reinherz, E.L. 1987. Ion channels activated by specific Ti or T3 antibodies in plasma membranes of human T cells.EMBO. J. 6:1935–1939PubMedGoogle Scholar
  51. Persechini, P.M., Araujo, E.G., Oliveira-Castro, G. 1980. Electrophysiology of phagocytic membranes: Induction of slow membrane hyperpolarizations in macrophages and macrophage polykaryons by intracellular calcium injection.J. Membrane Biol. 61:81–90Google Scholar
  52. Schlichter, L., Sidell, N., Hagiwara, S. 1986. K+ channels are expressed early in human T-cell development.Proc. Natl. Acad. Sci. USA 83:5625–5629PubMedGoogle Scholar
  53. Sharma, B. 1988. Inhibition of the generation of cytoxic lymphocytes by potassium ion channel blockers.Immunology 65:101–105PubMedGoogle Scholar
  54. Sheppard, D.N., Giraldez, F., Sepúlveda, F.V. 1988. Kinetics of voltage and Ca2+ activation and Ba2+ blockade of a largeconductance K+ channel fromNecturus enterocytes.J. Membrane Biol. 105:65–75Google Scholar
  55. Smith, K.A. 1988. The interleukin 2 receptor.Adv. Immunol. 42:165–179PubMedGoogle Scholar
  56. Stanley, E.F., Ehrenstein, G., Russell, J.T. 1988. Evidence for anion channels in secretory vesicles.Neuroscience 25:1035–1039PubMedGoogle Scholar
  57. Sutro, J.B., Vayuvegula, B., Gupta, S., Cahalan, M. 1988. Upregulation of voltage-sensitive K+ channels in mitogen-stimulated B lymphocytes.Biophys. J. 53:460a Google Scholar
  58. Tsien, R.Y., Pozzan, T., Rink, T.J. 1982. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes.Science 295:68–70Google Scholar
  59. Wong, B.S., Lecar, H., Adler, M. 1982. Single calcium-dependent potassium channels in clonal anterior pituitary cells.Biophys. J. 39:313–317PubMedGoogle Scholar
  60. Yamashita, N., Hamada, H., Tsuruo, T., Ogata, O. 1987. Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells.Cancer Res. 47:3736–3741PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • Frances V. McCann
    • 1
  • David C. McCarthy
    • 1
  • Randolph J. Noelle
    • 2
  1. 1.Department of PhysiologyDartmouth Medical SchoolHanover
  2. 2.Department of MicrobiologyDartmouth Medical SchoolHanover

Personalised recommendations