Skip to main content
Log in

Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The maximum monomer absorption wavelength of a frequently used external membrane probe, Merocyanine 540, can be related to the location of the binding site for the dye within lipid membranes. Solvent studies indicate the occurrence of very specific and mutual perturbances between the probe and its microenvironment, that are of relevance, when investigating structural and functional events in biomembranes with the aid of this dye. Merocyanine 540 (MC 540) is an excellent probe for structural altions in the lipids including phase transitions. The extinction coefficient and λmax place the location of the dye-chromophore slightly above the domain of the glycerol of backbone of neutral and charged phospholipids. This explains the sensitivity of MC 540 to structural variations in the head-group region of several synthetic dipalmitoyl-lecithin analogues. The major physical parameters involved in variations of the optical signals associated with changes in the membrane structure are the dye/lipid partition coefficient and the monomer-dimer dissociation constant of the dye bound to the lipids. A temperature dependent transition from the liquid-crystalline to the crystalline state leads mainly to an exclusion of the dye from the lipid phase with a concomitant dimerization of the dye molecules still in contact with the polarhead group region of the lipid. The relevance of this finding for the mechanism of transient optical signals in connection with the occurrence of action potentials in excitable membranes is discussed. Our findings underline the necessary caution when applying external optical probes and analyzing membrane features from the spectral data, because of inevitable perturbances in the microenvironment of every probe molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey, W.R. 1975. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environment and intrinsic electric fields.In: Functional Linkage in Biomolecular Systems. F.O. Schmitt, D.M. Schneider, and D.M. Crothers, editors. p. 325, Raven Press, New York

    Google Scholar 

  • Andersen, H.C. 1978. Probes of membrane structure.Annu. Rev. Biochem. 47:359

    Google Scholar 

  • Bach, D., Bursuker, I., Eibl, H., Miller, I.R. 1978. Differential scanning calorimetry of dipalmitoyllecithin analogues and of their interaction products with basic polypeptides.Biochim. Biophys. Acta 514:310

    Google Scholar 

  • Bangham, A.D., Hill, M.W., Miller, N.G.H. 1974. Preparation and use of liposomes as models of biological membranes.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 1, p. 1. Plenum Press, New York-London

    Google Scholar 

  • Brooker, L.G.S. 1966. Sensitizing and desensitizing dyes.In: The Theory of the Photographic Process. (3rd Ed.) T.H. James, editor. p. 198. Macmillan, New York

    Google Scholar 

  • Brooker, L.G.S., Craig, A.C., Heseltine, D.W., Jenkins, P.W., Lincoln, L.L. 1965. Color and constitution. XIII. Merocyanines as solvent property indicators.J. Am. Chem. Soc. 87:2443

    Google Scholar 

  • Brooker, L.G.S., Keyes, G.H., Sprague, R.M., Van Dyke, R.M., Van Lare, E., Van Zandt, G., White, F.L. 1951a. Studies in the cyanine dye series. XI. The Merocyanines.J. Am. Chem. Soc. 73:5326

    Google Scholar 

  • Brooker, L.G.S., Keyes, G.H., Sprague, R.H., Van Dyke, R.H., Van Lare, E., Van Zandt, G., White, F.L., Cressman, H.W.J., Dent, S.G., Jr. 1951b. Color and constitution. X. Absorption of the merocyanines.J. Am. Chem. Soc. 73:5332

    Google Scholar 

  • Chance, B. 1975. Electron transport and energy-dependent responses of deep and shallow probes of biological membranes.In: MTP International Review of Science. Biochemistry Series One. Vol. 3. Energy Tranducing Mechanisms. E. Racker, editor. p. 1. Butterworths, London

    Google Scholar 

  • Chance, B., Baltscheffsky, M. 1975. Carotenoid and merocyanine probes in chromophore membranes.In: Biomembranes. H. Eisenberg, E. Katchalski-Katzir, and L.A. Manson, editors. Vol. 7, p. 33. Plenum Press, New York-London

    Google Scholar 

  • Chance, B., Baltcheffsky, M., Vanderkooi, J., Cheng, W. 1974. Localized and delocalized potentials in biological membranesIn: Perspectives in Membrane Biology. S. Estrada-O and C. Gitler, editors. p. 329. Academic Press, New York-San Francisco-London

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M., Grinvald, A. 1978. Optical methods for monitoring neuron activity.Annu. Rev. Neurosci. 1:171

    Google Scholar 

  • Davila, H.V., Salzberg, B.M., Cohen, L.B., Waggoner, A.S. 1973. A large change in fluorescence that provides a promising method for measuring membrane potential.Nature, New Biol. 241:159

    Google Scholar 

  • Diembeck, W. 1976. Künstliche Phospholipide mit vergrössertem Phosphor-Stickstoff-Abstand. Ph. D. Dissertation. Technische Universität, Braunschweig

    Google Scholar 

  • Dragsten, P.R., Webb, W.W. 1977. Mechanism of membrane potential sensitivity of merocyanine 540.Biophys. J. 17:215a

    Google Scholar 

  • Dragsten, P.R., Webb, W.W. 1978. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540.Biochemistry 17:5228

    Google Scholar 

  • Easton, T.G., Valinsky, J.E., Reich, E. 1978. Merocyanine 540 as a fluorescent probe of membranes: Staining of electrically excitable cells.Cell 13:475

    Google Scholar 

  • Hamer, F.M. 1964. The Cyanine Dyes and Related Compounds. John Wiley & Sons, New York

    Google Scholar 

  • Handbook of Chemistry and Physics. 1976. (57th Ed.) R.C. Weast, editor. CRC Press, New York

    Google Scholar 

  • Huang, C., Thompson, T.E. 1974. Preparation of homogeneous single-walled phosphatidylcholine vesicles.In: Methods in Enzymology. S. Fleischer and L. Packer, editors. Vol. XXXII. B, p. 485. Academic Press, New York-S. Francisco-London

    Google Scholar 

  • Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152

    Google Scholar 

  • Keynes, R.D. 1976. Organization of the sodium channels in excitable membranes.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. p. 331. Academic Press, New York-San Francisco-London

    Google Scholar 

  • Kosower, E.M. 1968. An Introduction to Physical Organic Chemistry, p. 293ff. Whiley,New York

    Google Scholar 

  • Landolt, H.H., Börnstein, R. 1959. Zahlenwerke und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. (6th Ed.) Vol. II. Eigenschaften der Materie in Ihren Aggregatzuständen. Part 6, Elektrische Eigenschaften I, Springer-Verlag. Berlin-Heidelberg-New York

    Google Scholar 

  • Lentz, B.R., Barenholz, Y., Thompson, T.E. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes.Biochemistry 15:4521

    Google Scholar 

  • Lentz, B.R., Freire, E., Biltonen, R.L. 1978. Fluorescence and calorimetric studies of phase transition in phosphatidylcholine multilayers: Kinetics of the pretransition.Biochemistry 17:4475

    Google Scholar 

  • Liptay, W. 1965. The solvent dependence of the wavenumber of optical absorption and emission.In: Modern Quantum Chemistry. Part II. Interactions. O. Sinanoglu, editor. pp. 173. Academic Press, New York-London

    Google Scholar 

  • McRae, E.G. 1957. Theory of the solvent effects on molecular electronic spectra. Frequency shifts.J. Phys. Chem. 61:562

    Google Scholar 

  • McRae, E.G. 1958. Solvent effects on merocyanine spectra.Spectrochim. Acta 12:192

    Google Scholar 

  • Nakamaru, Y. 1977. Dimer formation of bromocresol purple anions on the phosphorylated intermediate of sarcoplasmic reticulum.J. Biochem. 82:1189

    Google Scholar 

  • Neumann, E., Nachmansohn, D. 1975. Nerve excitability—toward an integrating concept.In: Biomembranes. Vol. 7 (Aharon Katzir Memorial Volume).H. Eisenberg, E. Katchalski-Katzir, and L.A. Manson, editors. Plenum Press, New York-London

    Google Scholar 

  • Pohl, G.W. 1976. Spectral properties of fluorescent dyes in lecithin vesicles. Zeitschr. Naturforschung31c:575

    Google Scholar 

  • Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H. 1977. Changes in absorption, fluorescence, dichroism and birefringence in stained giant axons: Optical measurement of membrane potential.J. Membrane Biol. 33:141

    Google Scholar 

  • Rubalcava, B., Munos, D.M. de, Gitler, C. 1969. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes.Biochemistry 8:2742

    Google Scholar 

  • Sackmann, E., Träuble, H. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition.J. Am. Chem. Soc. 94:4482

    Google Scholar 

  • Salama, G., Morad, M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.Science 191:485

    Google Scholar 

  • Sheppard, S.E. 1942. The effects of environment and aggregation on the absorption spectra of dyes.Rev. Mod. Phys. 14:303

    Google Scholar 

  • Sherebrin, M.H., McClement, B.A.E., Franko, A.J. 1972. Electric field-induced shifts in the infrared spectrum of conducting nerve axons.Biophys. J. 12:977

    Google Scholar 

  • Simon, S.A., Lis, L.J., Kauffman, J.W., MacDonald, R.C. 1975. A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine.Biochim. Biophys. Acta 395:317

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C-H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315

    Google Scholar 

  • Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L., Thompson, T.E. 1976. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small singlelamellar dipalmitoylphosphatidylcholine vesicles.Biochemistry 15:1393

    Google Scholar 

  • Tasaki, I., Warashina, A. 1976a. Fast and slow rotation of dye molecules in squid axon membrane during excitation.Proc. Jpn. Acad. 52:37

    Google Scholar 

  • Tasaki, I., Warashina, A. 1976b. Dye-membrane interaction and its changes during nerve excitation.Photochem. Photobiol. 24:191

    Google Scholar 

  • Tasaki, I., Warashina, A., Pant, H. 1976. Studies of light emission, absorption and energy transfer in nerve membranes labelled with fluorescent probes.Biophys. Chem. 4:1

    Google Scholar 

  • Träuble, H. 1972. Phase transitions in lipids.In: Biomembranes. Vol. 3. Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slengers, editors. Plenum Press, New York-London

    Google Scholar 

  • Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurements of lipid transitions.Biochim. Biophys. Acta 307:491

    Google Scholar 

  • Turner, D.C., Brand, L. 1968. Quantitative estimation of protein binding site polarity. Fluorescence of N-acrylaminonaphthalenesulfonates.Biochemistry 7:3381

    Google Scholar 

  • Valinsky, J.E., Easton, T.G., Reich, E. 1978. Merocyanine 540 as a fluorescent probe of membranes: Selective staining of leukemic and immature hemopoietic cells.Cell 13:487

    Google Scholar 

  • Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317

    Google Scholar 

  • Waggoner, A., Grinvald, A. 1977. Mechanisms of rapid optical changes of potential sensitive dyes.Ann. N. Y. Acad. Sci. 303:217

    Google Scholar 

  • Waggoner, A.S., Wang, C.-H., Tolles, R.L. 1977. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes.J. Membrane Biol. 33:109

    Google Scholar 

  • Warashina, A., Tasaki, I. 1975. Evidence for rotation of dye molecules in membrane macromolecules associated with nerve excitation.Proc. Jpn. Acad. 51:610

    Google Scholar 

  • West, W., Carroll, B.H. 1966. Spectral sensitity and the mechanism of spectral sensitization.In: The Theory of the Photographic Process. (3rd Ed.) T.J. James, editor. p. 233, Macmillan, New York

    Google Scholar 

  • West, W., Geddes, A.L. 1964. The effects of solvents and of solid substrates on the visible molecular absorption spectrum of cyanine dyes.J. Phys. Chem. 68:837

    Google Scholar 

  • West, W., Pearce, S. 1965. The dimeric state of cyanine dyes.J. Phys. Chem. 69:1894

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelkes, P.I., Miller, I.R. Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J. Membrain Biol. 52, 1–15 (1980). https://doi.org/10.1007/BF01869001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869001

Key Words

Navigation