The Journal of Membrane Biology

, Volume 52, Issue 1, pp 1–15 | Cite as

Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes

  • Peter I. Lelkes
  • Israel R. Miller


The maximum monomer absorption wavelength of a frequently used external membrane probe, Merocyanine 540, can be related to the location of the binding site for the dye within lipid membranes. Solvent studies indicate the occurrence of very specific and mutual perturbances between the probe and its microenvironment, that are of relevance, when investigating structural and functional events in biomembranes with the aid of this dye. Merocyanine 540 (MC 540) is an excellent probe for structural altions in the lipids including phase transitions. The extinction coefficient and λmax place the location of the dye-chromophore slightly above the domain of the glycerol of backbone of neutral and charged phospholipids. This explains the sensitivity of MC 540 to structural variations in the head-group region of several synthetic dipalmitoyl-lecithin analogues. The major physical parameters involved in variations of the optical signals associated with changes in the membrane structure are the dye/lipid partition coefficient and the monomer-dimer dissociation constant of the dye bound to the lipids. A temperature dependent transition from the liquid-crystalline to the crystalline state leads mainly to an exclusion of the dye from the lipid phase with a concomitant dimerization of the dye molecules still in contact with the polarhead group region of the lipid. The relevance of this finding for the mechanism of transient optical signals in connection with the occurrence of action potentials in excitable membranes is discussed. Our findings underline the necessary caution when applying external optical probes and analyzing membrane features from the spectral data, because of inevitable perturbances in the microenvironment of every probe molecule.

Key Words

Optical probes lipid membranes bindingsites phase transitions structural perturbances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W.R. 1975. Evidence for cooperative mechanisms in the susceptibility of cerebral tissue to environment and intrinsic electric fields.In: Functional Linkage in Biomolecular Systems. F.O. Schmitt, D.M. Schneider, and D.M. Crothers, editors. p. 325, Raven Press, New YorkGoogle Scholar
  2. Andersen, H.C. 1978. Probes of membrane structure.Annu. Rev. Biochem. 47:359Google Scholar
  3. Bach, D., Bursuker, I., Eibl, H., Miller, I.R. 1978. Differential scanning calorimetry of dipalmitoyllecithin analogues and of their interaction products with basic polypeptides.Biochim. Biophys. Acta 514:310Google Scholar
  4. Bangham, A.D., Hill, M.W., Miller, N.G.H. 1974. Preparation and use of liposomes as models of biological membranes.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 1, p. 1. Plenum Press, New York-LondonGoogle Scholar
  5. Brooker, L.G.S. 1966. Sensitizing and desensitizing dyes.In: The Theory of the Photographic Process. (3rd Ed.) T.H. James, editor. p. 198. Macmillan, New YorkGoogle Scholar
  6. Brooker, L.G.S., Craig, A.C., Heseltine, D.W., Jenkins, P.W., Lincoln, L.L. 1965. Color and constitution. XIII. Merocyanines as solvent property indicators.J. Am. Chem. Soc. 87:2443Google Scholar
  7. Brooker, L.G.S., Keyes, G.H., Sprague, R.M., Van Dyke, R.M., Van Lare, E., Van Zandt, G., White, F.L. 1951a. Studies in the cyanine dye series. XI. The Merocyanines.J. Am. Chem. Soc. 73:5326Google Scholar
  8. Brooker, L.G.S., Keyes, G.H., Sprague, R.H., Van Dyke, R.H., Van Lare, E., Van Zandt, G., White, F.L., Cressman, H.W.J., Dent, S.G., Jr. 1951b. Color and constitution. X. Absorption of the merocyanines.J. Am. Chem. Soc. 73:5332Google Scholar
  9. Chance, B. 1975. Electron transport and energy-dependent responses of deep and shallow probes of biological membranes.In: MTP International Review of Science. Biochemistry Series One. Vol. 3. Energy Tranducing Mechanisms. E. Racker, editor. p. 1. Butterworths, LondonGoogle Scholar
  10. Chance, B., Baltscheffsky, M. 1975. Carotenoid and merocyanine probes in chromophore membranes.In: Biomembranes. H. Eisenberg, E. Katchalski-Katzir, and L.A. Manson, editors. Vol. 7, p. 33. Plenum Press, New York-LondonGoogle Scholar
  11. Chance, B., Baltcheffsky, M., Vanderkooi, J., Cheng, W. 1974. Localized and delocalized potentials in biological membranesIn: Perspectives in Membrane Biology. S. Estrada-O and C. Gitler, editors. p. 329. Academic Press, New York-San Francisco-LondonGoogle Scholar
  12. Cohen, L.B., Salzberg, B.M., Grinvald, A. 1978. Optical methods for monitoring neuron activity.Annu. Rev. Neurosci. 1:171Google Scholar
  13. Davila, H.V., Salzberg, B.M., Cohen, L.B., Waggoner, A.S. 1973. A large change in fluorescence that provides a promising method for measuring membrane potential.Nature, New Biol. 241:159Google Scholar
  14. Diembeck, W. 1976. Künstliche Phospholipide mit vergrössertem Phosphor-Stickstoff-Abstand. Ph. D. Dissertation. Technische Universität, BraunschweigGoogle Scholar
  15. Dragsten, P.R., Webb, W.W. 1977. Mechanism of membrane potential sensitivity of merocyanine 540.Biophys. J. 17:215a Google Scholar
  16. Dragsten, P.R., Webb, W.W. 1978. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540.Biochemistry 17:5228Google Scholar
  17. Easton, T.G., Valinsky, J.E., Reich, E. 1978. Merocyanine 540 as a fluorescent probe of membranes: Staining of electrically excitable cells.Cell 13:475Google Scholar
  18. Hamer, F.M. 1964. The Cyanine Dyes and Related Compounds. John Wiley & Sons, New YorkGoogle Scholar
  19. Handbook of Chemistry and Physics. 1976. (57th Ed.) R.C. Weast, editor. CRC Press, New YorkGoogle Scholar
  20. Huang, C., Thompson, T.E. 1974. Preparation of homogeneous single-walled phosphatidylcholine vesicles.In: Methods in Enzymology. S. Fleischer and L. Packer, editors. Vol. XXXII. B, p. 485. Academic Press, New York-S. Francisco-LondonGoogle Scholar
  21. Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152Google Scholar
  22. Keynes, R.D. 1976. Organization of the sodium channels in excitable membranes.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. p. 331. Academic Press, New York-San Francisco-LondonGoogle Scholar
  23. Kosower, E.M. 1968. An Introduction to Physical Organic Chemistry, p. 293ff. Whiley,New YorkGoogle Scholar
  24. Landolt, H.H., Börnstein, R. 1959. Zahlenwerke und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. (6th Ed.) Vol. II. Eigenschaften der Materie in Ihren Aggregatzuständen. Part 6, Elektrische Eigenschaften I, Springer-Verlag. Berlin-Heidelberg-New YorkGoogle Scholar
  25. Lentz, B.R., Barenholz, Y., Thompson, T.E. 1976. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes.Biochemistry 15:4521Google Scholar
  26. Lentz, B.R., Freire, E., Biltonen, R.L. 1978. Fluorescence and calorimetric studies of phase transition in phosphatidylcholine multilayers: Kinetics of the pretransition.Biochemistry 17:4475Google Scholar
  27. Liptay, W. 1965. The solvent dependence of the wavenumber of optical absorption and emission.In: Modern Quantum Chemistry. Part II. Interactions. O. Sinanoglu, editor. pp. 173. Academic Press, New York-LondonGoogle Scholar
  28. McRae, E.G. 1957. Theory of the solvent effects on molecular electronic spectra. Frequency shifts.J. Phys. Chem. 61:562Google Scholar
  29. McRae, E.G. 1958. Solvent effects on merocyanine spectra.Spectrochim. Acta 12:192Google Scholar
  30. Nakamaru, Y. 1977. Dimer formation of bromocresol purple anions on the phosphorylated intermediate of sarcoplasmic reticulum.J. Biochem. 82:1189Google Scholar
  31. Neumann, E., Nachmansohn, D. 1975. Nerve excitability—toward an integrating concept.In: Biomembranes. Vol. 7 (Aharon Katzir Memorial Volume).H. Eisenberg, E. Katchalski-Katzir, and L.A. Manson, editors. Plenum Press, New York-LondonGoogle Scholar
  32. Pohl, G.W. 1976. Spectral properties of fluorescent dyes in lecithin vesicles. Zeitschr. Naturforschung31c:575Google Scholar
  33. Ross, W.N., Salzberg, B.M., Cohen, L.B., Grinvald, A., Davila, H.V., Waggoner, A.S., Wang, C.H. 1977. Changes in absorption, fluorescence, dichroism and birefringence in stained giant axons: Optical measurement of membrane potential.J. Membrane Biol. 33:141Google Scholar
  34. Rubalcava, B., Munos, D.M. de, Gitler, C. 1969. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes.Biochemistry 8:2742Google Scholar
  35. Sackmann, E., Träuble, H. 1972. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. I. Use of spin labels and optical probes as indicators of the phase transition.J. Am. Chem. Soc. 94:4482Google Scholar
  36. Salama, G., Morad, M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.Science 191:485Google Scholar
  37. Sheppard, S.E. 1942. The effects of environment and aggregation on the absorption spectra of dyes.Rev. Mod. Phys. 14:303Google Scholar
  38. Sherebrin, M.H., McClement, B.A.E., Franko, A.J. 1972. Electric field-induced shifts in the infrared spectrum of conducting nerve axons.Biophys. J. 12:977Google Scholar
  39. Simon, S.A., Lis, L.J., Kauffman, J.W., MacDonald, R.C. 1975. A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine.Biochim. Biophys. Acta 395:317Google Scholar
  40. Sims, P.J., Waggoner, A.S., Wang, C-H., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315Google Scholar
  41. Suurkuusk, J., Lentz, B.R., Barenholz, Y., Biltonen, R.L., Thompson, T.E. 1976. A calorimetric and fluorescent probe study of the gel-liquid crystalline phase transition in small singlelamellar dipalmitoylphosphatidylcholine vesicles.Biochemistry 15:1393Google Scholar
  42. Tasaki, I., Warashina, A. 1976a. Fast and slow rotation of dye molecules in squid axon membrane during excitation.Proc. Jpn. Acad. 52:37Google Scholar
  43. Tasaki, I., Warashina, A. 1976b. Dye-membrane interaction and its changes during nerve excitation.Photochem. Photobiol. 24:191Google Scholar
  44. Tasaki, I., Warashina, A., Pant, H. 1976. Studies of light emission, absorption and energy transfer in nerve membranes labelled with fluorescent probes.Biophys. Chem. 4:1Google Scholar
  45. Träuble, H. 1972. Phase transitions in lipids.In: Biomembranes. Vol. 3. Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slengers, editors. Plenum Press, New York-LondonGoogle Scholar
  46. Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurements of lipid transitions.Biochim. Biophys. Acta 307:491Google Scholar
  47. Turner, D.C., Brand, L. 1968. Quantitative estimation of protein binding site polarity. Fluorescence of N-acrylaminonaphthalenesulfonates.Biochemistry 7:3381Google Scholar
  48. Valinsky, J.E., Easton, T.G., Reich, E. 1978. Merocyanine 540 as a fluorescent probe of membranes: Selective staining of leukemic and immature hemopoietic cells.Cell 13:487Google Scholar
  49. Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317Google Scholar
  50. Waggoner, A., Grinvald, A. 1977. Mechanisms of rapid optical changes of potential sensitive dyes.Ann. N. Y. Acad. Sci. 303:217Google Scholar
  51. Waggoner, A.S., Wang, C.-H., Tolles, R.L. 1977. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes.J. Membrane Biol. 33:109Google Scholar
  52. Warashina, A., Tasaki, I. 1975. Evidence for rotation of dye molecules in membrane macromolecules associated with nerve excitation.Proc. Jpn. Acad. 51:610Google Scholar
  53. West, W., Carroll, B.H. 1966. Spectral sensitity and the mechanism of spectral sensitization.In: The Theory of the Photographic Process. (3rd Ed.) T.J. James, editor. p. 233, Macmillan, New YorkGoogle Scholar
  54. West, W., Geddes, A.L. 1964. The effects of solvents and of solid substrates on the visible molecular absorption spectrum of cyanine dyes.J. Phys. Chem. 68:837Google Scholar
  55. West, W., Pearce, S. 1965. The dimeric state of cyanine dyes.J. Phys. Chem. 69:1894Google Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Israel R. Miller
    • 1
  1. 1.Department of MembranesThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations