The Journal of Membrane Biology

, Volume 57, Issue 2, pp 119–131 | Cite as

Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts

  • Agnes Heinz
  • Hermann Passow


The exposure of red cell ghosts to external Ca++ and K+ leads to a rapid net K+ efflux. Preincubation of the ghosts for various lengths of time in the absence of K+ in the external medium prior to a challenge with maximally effective concentrations of Ca++ and K+ renders the ghosts unresponsive to that challenge with a half-time of about 7–10 min. Preincubation at a range of K+ concentrations for a fixed length of time (60 min) prior to the challenge revealed that K+ concentrations of about 500 μm or more suffice to maintain the K+ channel in a maximally responsive state for at least 60 min. These K+ concentrations are considerably lower than the K+ concentrations required to make the responsive channel respond with a maximal rate of K+ efflux. Thus, external K+ is not only necessary to induce the permeability change but also to maintain the transport system in a functional state.

The presence of Mg++ or ethylenediamine-tetraacetic acid (EDTA) in the K+-free preincubation media preserves the responsiveness to a challenge with Ca++ plus K+. In contrast to external K+, the presence of external Ca++ does not reduce but rather enhances the loss of responsiveness. An excess of EDTA prevents the effects of Ca++ while washes with EDTA after exposure to Ca++ do not reverse them.

In red cell ghosts that contain Ca++ buffers, the transition from a responsive to a nonresponsive state incubation in the absence of external K+ is enhanced. The effects of incubation in the presence of Ca++ in K+-free media are reversed; external Ca++ now reduces the rate at which the responsiveness is lost. The loss of responsiveness after incubation in K+-free media prior to a challenge with external K+ and internal Ca++ does also take place when K+-efflux from red cell ghosts is measured by means of42K+ into media that have the same K+ concentrations as the ghost interior. This confirms that the effects of K+-free incubation are due to the modification of the K+-selective channel rather than to an inhibition of diffusive Cl-efflux.


EDTA Effective Concentration Free Media External Medium Permeability Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation used in text


Tris (hydroxymethyl) aminomethan


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315Google Scholar
  2. Blum, R.M., Hoffman, J.F. 1972. Ca-induced K transport in human red cells: Localisation of the Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146Google Scholar
  3. Bodemann, H., Passow, H. 1972. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis.J. Membrane Biol. 8:1Google Scholar
  4. Dissing, S., Lassen, U.V., Scharff, O. 1979. Magnesium inhibition of hyperpolarization ofAmphiuma red cell membrane induced by calcium and A 23187.J. Physiol. (London) 289:29PGoogle Scholar
  5. Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A 23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internalCa.Nature (London) 259:47Google Scholar
  6. Gárdos, G. 1958a. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653Google Scholar
  7. Gárdos, G. 1958b. Effect of ethylenediamine-tetra-acetate on the permeability of human erythrocytes.Acta Physiol. Acad. Sci. Hung. 14:1Google Scholar
  8. Knauf, P.A., Riordan, J.R., Schuhmann, B., Wood-Guth, I., Passow, H. 1975. Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts.J. Membrane Biol. 25:1Google Scholar
  9. Kregenow, F.M. 1962. Metabolic control of passive transport and exchange diffusion of Na and K in human red cells. M.D. Thesis. Yale University, New HavenGoogle Scholar
  10. Kregenow, F.M., Hoffman, J.F. 1962. Metabolic control of passive transport and exchange diffusion of Na and K in human red cells. (Abstr.) Biophysical Society, Washington, D.C.Google Scholar
  11. Kregenow, F.M., Hoffmann, J.F. 1972. Some kinetics and metabolic characteristics of calcium-induced potassium transport in human red cells.J. Gen. Physiol. 60:406Google Scholar
  12. Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1976. Effect of calcium on the membrane potential ofAmphiuma red cells.J. Membrane Biol. 26:51Google Scholar
  13. Lassen, U.V., Lew, V.L., Pape, L., Simonsen, L.O. 1978. Transient activation of the Ca++-sensitive K+-channel in red cells by external K+.In: Abstracts of Communications presented at the Meeting of the European Red Cell Club, Sandbjerg. (Abstr.)Google Scholar
  14. Lepke, S., Passow, H. 1968. Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane.J. Gen. Physiol. 51:365Google Scholar
  15. Lew, V.L. 1971a. On the ATP dependence of the Ca2+-induced increase in K+ permeability observed in human red cells.Biochim. Biophys. Acta 233:827Google Scholar
  16. Lew, V.L. 1971b. Effect of ouabain on the Ca2+-dependent increase in K+ permeability in depleted guinea-pig red cells.Biochim. Biophys. Acta 249:236Google Scholar
  17. Lew, V.L. 1974. On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes.In: Comparative Biochemistry and Physiology of Transport. L. Bolis, S.E. Luria and R. Lynen, editors. pp. 310–316. North-Holland Publishing Company, AmsterdamGoogle Scholar
  18. Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes.Nature (London) 263:336Google Scholar
  19. Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport, Vol. 10. F. Bronner and A. Kleinzeller, editors. pp. 217–277. Academic Press, New York-San Francisco-LondonGoogle Scholar
  20. Lew, V.L., Beaugé, L. 1979. Passive cation fluxes in red cell membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. II. pp. 81–115. Springer Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  21. Manninen, V. 1970. Movements of sodium and potassium ions and their tracers in propanol-treated red cells and diaphragm muscle.Acta Physiol. Scand. suppl. 355:1Google Scholar
  22. Øskov, S.L. 1935. Untersuchungen über den Einfluß von Kohlensäure und Blei auf die Permeabilittät der Blutkörperchen für Kalium und Rubidium.Biochem. Z. 279:250Google Scholar
  23. Passow, H. 1961. Zusammenwirken von Membranstruktur und Zellstoffwechsel bei der Regulierung der Ionenpermeabilität roter Blutkörperchen.In: Biochemie des aktiven Transports. 12. Colloquium der Gesellschaft für physiologische Chemie in Mosbach, Baden. pp. 54–99. Springer, Berlin-Göttingen-HeidelbergGoogle Scholar
  24. Passow, H. 1963. Metabolic control of the passive permeability for potassium ions.In: Cell Interface Reactions. A.D. McLaren, P. Mitchell and H. Passow, editors. pp. 57–107. Scholar's Library, New YorkGoogle Scholar
  25. Passow, H. 1964. Ion and water permeability of the red blood cell.In: The Red Blood Cell. C. Bishop and D.M. Surgenor, editors. pp. 71–145. Academic Press, New YorkGoogle Scholar
  26. Passow, H. 1969. Ion permeability of erythrocyte ghosts.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. pp. 22–27. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  27. Perrin, O.D., Dempsey, B. 1974. Metall-ion buffers.In: Buffers for pH and Metall Ion Control. D.D. Perrin and B. Dempsey, editors. pp. 94–102. Chapman and Hall, LondonGoogle Scholar
  28. Porzig, H. 1975. Comparative study of the effects of propanolol and tetracaine on cation movements in resealed human red cell ghosts.J. Physiol. (London) 249:27Google Scholar
  29. Riordan, J.R., Passow, H. 1971. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts.Biochim. Biophys. Acta 249:601Google Scholar
  30. Riordan, J.R., Passow, H. 1974. The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts.In: Comparative Physiology. L. Bolis, K. Schmidt-Nielsen and S.H.P. Madrell, editors. pp. 543–581. North-Holland, Amsterdam-LondonGoogle Scholar
  31. Romero, P.J., Whittam, R.R. 1171. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. (London) 214:481Google Scholar
  32. Schwoch, G., Passow, H. 1973. Preparation and properties of human erythrocyte ghosts.Mol. Cell. Biochem. 2:197Google Scholar
  33. Simons, T.J.B. 1976a. The preparation of human red cell ghosts containing calcium buffers.J. Physiol. (London) 256:209Google Scholar
  34. Simons, T.J.B. 1976b. Calcium-dependent potassium exchange in human red cell ghosts.J. Physiol. (London) 256:227Google Scholar
  35. Simons, T.J.B. 1979. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts.J. Physiol. (London) 288:481Google Scholar
  36. Whittam, R. 1968. Control of membrane permeability to potassium in red blood cells.Nature (London) 219:610Google Scholar
  37. Wilbrandt, W. 1937. A relationship between the permeability of the red cell and its metabolism.Trans. Faraday Soc. 33:956Google Scholar
  38. Wilbrandt, W. 1940. Die Abhängigkeit der Ionenpermeabilität der Erythrocyten vom glykolytischen Stoffwechsel.Pfluegers Arch. 243:519Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Agnes Heinz
    • 1
  • Hermann Passow
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt am MainWest Germany

Personalised recommendations