The Journal of Membrane Biology

, Volume 29, Issue 1, pp 255–264 | Cite as

Influence of membrane heterogeneity on kinetics of nonelectrolyte tracer flows

  • J. H. Li
  • A. Essig
Article

Summary

In a composite membrane with heterogeneous channels, prevention of net volume flow with hydrostatic pressure differences and/or impermeant osmotic solutes may induce positive isotope interaction (coupling of isotope flows) consequent to circulation of volume flow. The permeability coefficient for net flow will then exceed the tracer permeability coefficient. A permeant osmotic solute will induce either positive or negative isotope interaction, according to whether membrane heterogeneity is more marked for the test solute or the osmotic solute, respectively. Thus membrane heterogeneity may account for phenomena commonly attributed to “single file diffusion” or “exchange diffusion”. For sufficiently small flows the general flux ratio relationship for homogeneous membranes will continue to apply.

Keywords

Volume Flow Composite Membrane Permeability Coefficient Flux Ratio Exchange Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biber, T. U. L., Curran, P. F. 1968. Coupled solute fluxes in toad skin.J. Gen. Physiol. 51:606PubMedGoogle Scholar
  2. 2.
    DeSousa, R. C., Li, J. H., Essig, A. 1971. Flux ratios and isotope interaction in an ion exchange membrane.Nature (London) 231:44Google Scholar
  3. 3.
    Franz, T. J., Galey, W. R., Van Bruggen, J. T. 1968. Further observations on asymmetrical solute movement across membranes.J. Gen. Physiol. 51:1PubMedGoogle Scholar
  4. 4.
    Hodgkin, A. L., Keynes, R. D. 1955. The potassium permeability of a giant nerve fiber.J. Physiol. (London) 128:61Google Scholar
  5. 5.
    Kedem, O., Essig, A. 1965. Isotope flows and flux ratios in biological membranes.J. Gen. Physiol. 48:1047PubMedGoogle Scholar
  6. 6.
    Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to nonelectrolytes.Biochim. Biophys. Acta 27:229PubMedGoogle Scholar
  7. 7.
    LeFevre, P. G., McGinnis, G. F. 1960. Tracer exchangevs. net uptake of glucose through human red cell surface.J. Gen. Physiol. 44:87PubMedGoogle Scholar
  8. 8.
    Levi, H., Ussing, H. H. 1948. The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius.Acta Physiol. Scand. 16:232Google Scholar
  9. 9.
    Li, J. H., DeSousa, R. C., Essig, A. 1974. Kinetics of tracer flows and isotope interaction in an ion exchange membrane.J. Membrane Biol. 19:93Google Scholar
  10. 10.
    Lief, P. D., Essig, A. 1973. Urea transport in the toad bladder; Coupling of urea flows.J. Membrane Biol. 12:159Google Scholar
  11. 11.
    Patlak, C. S., Rapoport, S. I. 1971. Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes.J. Gen. Physiol. 57:113PubMedGoogle Scholar
  12. 12.
    Ussing, H. H. 1947. Interpretation of the exchange of radio-sodium in isolated muscle.Nature (London) 160:262Google Scholar
  13. 13.
    Ussing, H. H. 1960. The Alkali Metal Ions in Biology. Springer-Verlag, BerlinGoogle Scholar
  14. 14.
    Ussing, H. H., Johansen, B. 1969. Anomalous transport of sucrose and urea in toad skin.Nephron 6:317PubMedGoogle Scholar
  15. 15.
    Weinstein, J. N., Bunow, B. J., Caplan, S. R. 1972. Transport properties of charge-mosaic membranes. I. Theoretical models.Desalination 11:341Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1976

Authors and Affiliations

  • J. H. Li
    • 1
    • 2
  • A. Essig
    • 1
    • 2
  1. 1.Department of Physiology, School of MedicineUniversity of GenevaSwitzerland
  2. 2.Boston University School of MedicineBoston

Personalised recommendations