Skip to main content
Log in

Sugar hydrolases and their arrangement on the rat intestinal microvillus membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The arrangement of the sugar hydrolases, sucrase-isomaltase, maltase, and lactase on the microvillus membrane of rat intestine was investigated by immunological technique. The enzymes were purified essentially free of each other to near homogeneity and antisera of high specificity were obtained against each. Microvillus membranes were prepared routinely in high purity from rat intestine and contained an average 61% protein, 20% lipid, and 19% carbohydrate, with the sugar hydrolases comprising an estimated 20–25% of the membrane protein. The immunoreactivity of membrane-bound sucrase-isomaltase, maltase, and lactase was investigated with antisera demonstrating specific reactivity to each, when tested in the presence of other membrane extractives. The membrane-bound enzymes were found in each case to combine with antibody in amounts equivalent to that required to effect precipitation of comparable units of the free enzymes from solution. Preloading membrane vesicles with antibodies to any two of the enzymes did not affect either the immunoreactivity or extractability (by papain or Triton X-100) of the third.

The antibody-binding studies indicated an arrangement of these enzymes independent of each other on the membrane surface, in a manner allowing each to maintain a high degree of molecular freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennet, H.S. 1963. Morphological aspects of extracellular polysaccharides.J. Histochem. Cytochem. 11:14

    Google Scholar 

  2. Colbeau, A., Maroux, S. 1978. Integration of alkaline phosphatase in the intestinal brush border membrane.Biochim. Biophys. Acta 511:39

    PubMed  Google Scholar 

  3. Crane, R.K. 1975. A digestive-absorptive surface as illustrated by the intestinal cell brush border.Trans. Am. Microsc. Soc. 94:529

    PubMed  Google Scholar 

  4. Flanagan, P.R., Forstner, G.G. 1978. Purification of rat intestinal maltase/glucoamylase and its anomalous dissociation either by heat or by low pH.Biochem. J. 173:553

    PubMed  Google Scholar 

  5. Forstner, G.G. 1971. Release of intestinal surface-membrane glycoproteins associated with enzyme activity by brief digestion with papain.Biochem. J. 121:781

    PubMed  Google Scholar 

  6. Gitzelmann, R., Bachi, Th., Binz, H., Lindenmann, J., Semenza, G. 1970. Localization of rabbit intestinal sucrase with ferritin-antibody conjugates.Biochim. Biophys. Acta 196:20

    PubMed  Google Scholar 

  7. Glossman, H., Neville, D., 1971. Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat.J. Biol. Chem. 246:6339

    PubMed  Google Scholar 

  8. Hopfer, U., Nelson, K., Perroto, J., Isselbacher, K.T. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25

    Google Scholar 

  9. Ito, S. 1965. The enteric surface coat on cat intestinal microvilli.J. Cell Biol. 27:475

    PubMed  Google Scholar 

  10. Johnson, C.F. 1967. Disaccharidase: Localization in hamster intestine brush borders.Science 155:1670

    PubMed  Google Scholar 

  11. Jovin, T.M., Dante, M.L., Chrambach, A. 1970. Multiphasic Buffer Systems Output (magnetic tapes available from National Technical Information Service. Springfield, VA 22151 (PB 196-085 to PB 196-091))

  12. Kelly, J.J., Alpers, D.H. 1973. Blood group antigenicity of purified human intestinal disaccharidases.J. Biol. Chem. 248:8216

    PubMed  Google Scholar 

  13. Kim, Y.S., Brophy, E.J. 1976. Rat intestinal brush border membrane peptidases I. Solubilization, purification and physicochemical properties of two different forms of the enzyme.J. Biol. Chem. 251:3199

    PubMed  Google Scholar 

  14. Kolinska, J., Kraml, J. 1972 Separation and characterization of, sucrase-isomaltase and of glucoamylase of rat intestine.Biochim. Biophys. Acta 284:235

    PubMed  Google Scholar 

  15. Kwong, L.K., Sunshine, P., Tsuboi, K.K. 1978. Arrangement of the sugar hydrolases on the rat intestinal brush border membrane.Fed. Proc. 37:1821

    Google Scholar 

  16. Louvard, D., Maroux, S., Desnuelle, P. 1975. Topological studies on the hydrolases bound to the intestinal brush border membrane. II. Interactions of free and bound aminopeptidase with a specific, antibody.Biochim. Biophys. Acta 389:389

    PubMed  Google Scholar 

  17. Louvard, D., Maroux, S., Vannier, C., Desnuelle, P. 1975. Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100.Biochim. Biophys. Acta 375:236

    Google Scholar 

  18. Louvard, D., Semeriva, M., Maroux, S. 1976. The brush-border intestinal aminopeptidase, a transmembrane protein as probed by macromolecular photolabelling.J. Mol. Biol. 106:1023

    PubMed  Google Scholar 

  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  20. Maestracci, D. 1976. Enzymic solubilization of the human intestinal brush border membrane enzymes.Biochim. Biophys. Acta 433:469

    PubMed  Google Scholar 

  21. Malik, N., Butterworth, P.J. 1976. Molecular properties of rat intestinal alkaline phosphatase.Biochim. Biophys. Acta 446:105

    PubMed  Google Scholar 

  22. Maroux, S., Louvard, D. 1976. On the hydrophobic part of aminopeptidase and maltases which bind the enzyme to the intestinal brush border membrane.Biochim. Biophys. Acta 419:189

    PubMed  Google Scholar 

  23. Nakano, M., Sumi, Y., Miyakawa, M. 1977. Purification and properties of trehalase from rat intestinal mucosal cells.J. Biochem. (Tokyo) 81:1041

    Google Scholar 

  24. Nishi, Y., Takesue, Y. 1975. Localization of rabbit intestinal sucrase on the microvilli membrane with non-labelled antibodies.J. Electron Microsc. 24:203

    Google Scholar 

  25. Reinhold, V.N. 1972. Gas-liquid chromatographic analysis of constituent carbohydrates in glycoproteins.Methods Enzymol. 25:244

    Google Scholar 

  26. Reynolds, J.A. 1979. Interaction of divalent antibody with cell surface antigens.Biochemistry 18:264

    PubMed  Google Scholar 

  27. Schlegel-Haueter, S., Hore, S., Kerry, K.R., Semenza, G. 1972. The preparation of lactase and glucoamylase of rat small intestine.Biochim. Biophys. Acta 258:506

    PubMed  Google Scholar 

  28. Schmitz, J., Preiser, H., Maestracci, D., Chosh, B.K., Gerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98

    PubMed  Google Scholar 

  29. Segrest, J.P., Kahane, I., Jackson, R.L., Marchesi, V.T. 1973. Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure.Arch. Biochem. Biophys. 155:167

    PubMed  Google Scholar 

  30. Sigrist, H., Ronner, P., Semenza, G. 1975. A hydrophobic form of the small-intestinal sucrase-isomaltase complex.Biochim. Biophys. Acta 406:433

    PubMed  Google Scholar 

  31. Spatz, L., Strittmater, P. 1971. A form of cytochromeb 5 that contains an additional hydrophobic sequence of 40 amino acid residues.Proc. Nat. Acad. Sci. USA 68:1042

    PubMed  Google Scholar 

  32. Spatz, L., Strittmater, P. 1973. A form of reduced nicotinamide adenine dinucleotidecytochromeb 5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment.J. Biol. Chem. 248:793

    PubMed  Google Scholar 

  33. Takesue, Y., Kashiwagi, T. 1969. Solubilization and behavior toward Sephadex of rabbit intestinal sucrase.J. Biochem. (Tokyo) 65:427

    Google Scholar 

  34. Takesue, Y., Nishi, Y. 1976. Topographical relationship between sucrase and leucine β-naphthylamidase on the microvilli membrane of rabbit intestinal mucosal cells.J. Biochem. (Tokyo) 79:479

    Google Scholar 

  35. Takesue, Y., Nishi, Y. 1978. Topographical studies on intestinal microvillous leucine β-naphthylamidase on the outer membrane surface.J. Membrane Biol. 39:285

    Google Scholar 

  36. Ugolev, A.M. 1972. Membrane digestion and peptide transport.In: Peptide Transport in Bacteria and Mammalian Gut. K. Eliot and M. O'Connor, editors. p. 123. Associated Scientific, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuboi, K.K., Kwong, L.K., Burrill, P.H. et al. Sugar hydrolases and their arrangement on the rat intestinal microvillus membrane. J. Membrain Biol. 50, 101–122 (1979). https://doi.org/10.1007/BF01868943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868943

Keywords

Navigation