Skip to main content
Log in

Bluelight-induced, flavin-mediated transport of redox equivalents across artificial bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

This paper continues our studies of physico-chemical properties of vesicle-bound flavins. Based on previous results, an advanced model system was designed in order to study the mechanisms underlying bluelight-induced redox transport across artificial membranes. The lumen of single-shelled vesicles was charged with cytochromec, and amphiphilic flavin (AF1 3, AF1 10) was bound to the membrane. Upon bluelight irradiation redox equivalents are translocated from exogeneous 1e (EDTA)-and 2e (BH3CN) donors across the membrane finally reducing the trapped cytochromec both under aerobic and anaerobic conditions. The mechanisms involved are explored and evidence for the involvement of various redox states of oxygen, dihydroflavin and flavosemiquinone is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beinert, H. 1960. Flavin coenzymes.In: The Enzymes. P.D. Boyer, H. Lardy and K. Myrback, editors, Vol. 2, pp. 339–416. Academic, New York, London

    Google Scholar 

  2. Berns, D.S. 1976. Photosensitive bilayer membranes as model systems for photobiological processes.Photochem. Photobiol. 24:117–139

    Google Scholar 

  3. Brockerhoff, H. 1976. Molecular designs of membrane lipids.In: Bioorganic Chemistry. E. van Tamelen, editor. Vol. III, pp. 1–20. E. van Tamelen, editor. Academic, New York

    Google Scholar 

  4. Calvin, M. 1983. Artificial photosynthesis: Quantum capture and energy storage.Photochem. Photobiol. 37:349–360

    Google Scholar 

  5. Chen, C.H., Berns, D.S. 1976. Sensitivity of artificial bilayer membranes: Lipid chlorophyll interaction.Photochem. Photobiol. 24:255–260

    Google Scholar 

  6. Demel, R.A., De Kruyff, B. 1976. The function of sterols in membranes.Biochim. Biophys. Acta 457:109–132

    Google Scholar 

  7. Dodelet, J.-P., Lawrence, M.F., Ringnet, M., Leblance, R.M. 1981. Electron transfer from chlorophylla to quinone in mono- and multilayer arrays.Photochem. Photobiol. 33:713–720

    Google Scholar 

  8. Eichinger, D., Falk, H., Sobczak, R. 1983. Light driven transport of bilirubin through a bulk liquid membrane.Photochem. Photobiol. 38:193–195

    Google Scholar 

  9. Fee, J.A., Valentine, J.S. 1977. Chemical and physical properties of superoxide.In: Superoxide and superoxide dismutases. A.M. Michelson, J.M. McCord and I. Fridovich, editors. pp. 19–60. Academic, London, New York, San Francisco

    Google Scholar 

  10. Fife, D.J., Moore, W.M. 1979. The reduction and quenching of photoexcited flavin by EDTA.Photochem. Photobiol. 29:43–47

    Google Scholar 

  11. Ford, W.E., Tollin, G. 1982. Chlorophyll photosensitized electron transfer in phospholipid vesicle bilayers: Insidevs. outside asymmetry.Photochem. Photobiol. 36:647–655

    Google Scholar 

  12. Fridovich, I. 1978. Superoxide radicals, superoxide dismutases and the anaerobic lifestyle.Photochem. Photobiol. 28:733–741

    Google Scholar 

  13. Futami, A., Hurt, E., Hauska, G. 1979. Vectorial redox reactions of physiological quinones. I. Requirements of a minimum chain length of the isoprenoid side chain.Biochim. Biophys. Acta 547:583–596

    Google Scholar 

  14. Georgevich, G., Roux, S.J. 1982. Permeability and structural changes induced by phytochrome in lipid vesicles.Photochem. Photobiol. 36:663–671

    Google Scholar 

  15. Goldsmith, M.H.M., Caubergs, R.J., Briggs, W.R. 1980. Light-inducible cytochrome reduction in membrane preparations from corn coleoptiles.Plant Physiol. 66:1067–1073

    Google Scholar 

  16. Grodowski, M.S., Veyret, B., Weiss, K. 1977. Photochemistry of flavins. II. Photophysical properties of alloxazines and isoalloxazines.Photochem. Photobiol. 26:341–352

    Google Scholar 

  17. Happe, M., Teather, R.M., Overath, P., Knobling, A., Oesterhelt, D. 1977. Direction of proton translocation in proteo liposomes from purple membrane and acidic lipids depends on the pH during reconstitution.Biochim. Biophys. Acta 465:415–420

    Google Scholar 

  18. Hauska, G. 1977a. Plasto- and ubiquinone as translocators of electrons and protons through membranes.FEBS Lett. 79:345–347

    Google Scholar 

  19. Hauska, G. 1977b. The permeability of quinones through membranes.In: Bioenergetics of membranes. L. Packer, G.C. Papageorgiou and A. Trebst editors. pp. 177–187. Elsevier/North-Holland Biomedical, Amsterdam

    Google Scholar 

  20. Hauska, G., Orlich, G. 1980. Electron and proton transport in biological membranes.J. Membr. Sci. 6:7–18

    Google Scholar 

  21. Hauska, G., Trebst, A. 1977. Proton translocation in chloroplasts.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 6, pp. 151–220. Academic, New York, San Francisco, London

    Google Scholar 

  22. Hemmerich, P., Massey, V., Michel, H., Schug, Ch. 1982. Scope and limitation of single electron transfer.In: Structure and Bonding. J.D. Dunitz, J.B. Goodenough, P. Hemmerich, J.A. Ibers, C.K. Jorgenson, J.B. Neilands, D. Reinen and R.J.P. Williams, editors. Vol. 48, pp. 93–123. Springer, Berlin, Heidelberg

    Google Scholar 

  23. Hinkle, P. 1970. A model system for mitochondrial ion transport and respiratory control.Biochem. Biophys. Res. Commun. 41:1375–1381

    Google Scholar 

  24. Hurley, J.K., Castelli, F., Tollin, G. 1981. Chlorophyllquinone photochemistry in liposomes: Mechanisms of radical formation and decay.Photochem. Photobiol. 34:623–631

    Google Scholar 

  25. Jain, M.K., Wagner, R.C. 1980. Facilitated transport.In: Introduction to Biological Membranes. Ch. 9. John Wiley & Sons, New York, Chichester, Brisbane, Toronto

    Google Scholar 

  26. Kano, K., Tanaka, Y., Ogawa, T., Shimomura, M., Kunitake, T. 1981. Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible cis-trans-isomerization of azobenzenes.Photochem. Photobiol. 34:323–329

    Google Scholar 

  27. Katagi, T., Yamamura, T., Saito, T., Sasaki, Y. 1981. Electron transport across lipid membranes photosensitized by amphiphilic zink porphyrin.Chem. Lett. pp. 503–506

  28. Kim, I.-S., Song, P.-S. 1981. Binding of phytochrome to liposomes and protoplasts.Biochemistry 20:5482–5489

    Google Scholar 

  29. Klemm, E., Ninnemann, H. 1979. Nitrate reductase—A key enzyme in blue light-promoted conidiation and absorbance change ofNeurospora.Photochem. Photobiol. 29:629–632

    Google Scholar 

  30. Lancaster, J.R., Jr., 1981. Membrane-bound flavin adenine dinucleotide inMethanobacterium Bryantii.Biochem. Biophys. Res. Commun. 100:240–246

    Google Scholar 

  31. Michel, H., Hemmerich, P. 1981. Substitution of the flavin chromophore with lipophilic side chains: A novel membrane redox label.J. Membrane Biol. 60:143–153

    Google Scholar 

  32. Michelson, A.M. 1977. Chemical production of superoxide anions by reaction between riboflavin, oxygen, and reduced nicotinamide adenine dinucleotide. Specificity of tests for O 2 .In: Superoxide and Superoxide Dismutases. A.M. Michelson, B.M. McCord and I. Fridovich, editors. pp. 87–106. Academic, London

    Google Scholar 

  33. Mitchell, P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences.Science 206:1148–1159

    Google Scholar 

  34. Montal, M., Darszon, A., Strasser, R.J. 1978. Rhodopsin and bacteriorhodopsin in model membranes.In: Frontiers of Biological Energetics. P.L. Dutton, J.S. Leigh, and A. Scarpa, editors. Vol. II, pp. 1109–1117. Academic, London, New York

    Google Scholar 

  35. Naoi, M., Naoi, M., Shimizu, T., Malviya, A.N., Yagi, K. 1977. Permeability of amine acids into liposomes.Biochim. Biophys. Acta 471:305–310

    Google Scholar 

  36. Nicholls P. 1974. Cytochromec binding to enzymes and membranes.Biochim. Biophys. Acta 346:261–310

    Google Scholar 

  37. O'Brien, D.F. 1979. Light regulated permeability of rhodopsin-phospholipid membrane vesicles.Photochem. Photobiol. 29:679–685

    Google Scholar 

  38. Papa, S. 1976. Proton translocation reactions in the respiratory chains.Biochim. Biophys. Acta 456:39–84

    Google Scholar 

  39. Pohl, W.G., Teissie, J. 1975. The use of fluorescent probes for studying the interaction of proteins with black lipid membranes.Z. Naturforsch. 30c: 147–151

    Google Scholar 

  40. Raker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenine triphosphate formation.J. Biol. Chem. 249:662–663

    Google Scholar 

  41. Rumyantseva, G.V., Weiner, L.M., Molin, Yu., N. 1979. Permeation of liposome membrane by superoxide radical.FEBS Lett. 108:477–480

    Google Scholar 

  42. Samuel, D., Steckel, F. 1974. The physico-chemical properties of molecular oxygen.In: Molecular Oxygen in Biology. O. Hayaishi, editor. North Holland, Amsterdam

    Google Scholar 

  43. Schmidt, W. 1979. On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence.J. Membrane Biol. 47:1–25

    Google Scholar 

  44. Schmidt, W. 1980. Physiological bluelight reception.In: Structure and Bonding. P. Hemmerich, editor. Vol. 41, pp. 1–41. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  45. Schmidt, W. 1980. A high performance dual wavelength spectrophotometer and fluorometer.J. Biochem. Biophys. Meth. 2:171–181

    Google Scholar 

  46. Schmidt, W. 1981. Fluorescence properties of isotropically and anisotropically embedded flavins.Photochem. Photobiol. 34:7–16

    Google Scholar 

  47. Schmidt, W. 1982. A computerized single beam spectrophotometer: An easy set-up.Anal. Biochem. 125:162–167

    Google Scholar 

  48. Schmidt, W. 1983. Further photophysical and photochemical characterization of flavins associated with single-shelled vesicles.J. Membrane Biol. 76:73–82

    Google Scholar 

  49. Schmidt, W. 1983. Capability of the on-line computer in fluorescence spectroscopy.Opt. Eng. 22:576–582

    Google Scholar 

  50. Schmidt W., Butler, W.L. 1976. Flavin-mediated photoreactions in artificial systems: A possible model for the blue light photoreceptor pigment in living systems.Photochem. Photobiol. 24:71–75

    Google Scholar 

  51. Schmidt, W., Hemmerich, P. 1981. On the redox reactions and accessibility of amphiphilic flavins in artificial membrane vesicles.J. Membrane Biol. 60:129–141

    Google Scholar 

  52. Senger, H. 1982. The effect of blue light on plants and microorganisms.Photochem. Photobiol. 35:911–920

    Google Scholar 

  53. Senger, H., Briggs, W.R. 1981. The blue light receptor(s): Primary reactions and subsequent metabolic changes.In: Photochemical and Photobiological Reviews. K.C. Smith, editor. Vol. 6, pp. 1–38. Plenum, New York

    Google Scholar 

  54. Song, P.-S. 1980. Primary photophysical and photochemical reactions: Theoretical background and general introduction.In: Photoreception and Sensory Transduction in Aneural Organisms. F. Lenci and G. Colombetti, editors. pp. 189–210. Plenum, New York

    Google Scholar 

  55. Song, P.-S. 1981. Photosensory transduction in Stentor coerulus and related organisms.Biochim. Biophys. Acta 639:1–29

    Google Scholar 

  56. Steinemann, A., Läuger, P. 1971. Interaction of cytochromec with phospholipid monolayers and bilayer membranes.J. Membrane Biol. 4:74–86

    Google Scholar 

  57. Takahashi, M.-A., Asada, K. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids.Arch. Biochem. Biophys. 226:558–566

    Google Scholar 

  58. Tien, H.T. 1968. Photoelectric effects in thin and bilayer lipid membranes in aqueous media.J. Phys. Chem. 72:4512–4519

    Google Scholar 

  59. Tien, H.T. 1976. Electronic processes and photoelectric aspects of bilayer lipid membranes.Photochem. Photobiol. 24:97–116

    Google Scholar 

  60. Traber, R., Kramer, H.E.A., Hemmerich, P. 1982. One and two electron transfer pathways in the photoreduction of flavin.Pure Appl. Chem. 54:1651–1665

    Google Scholar 

  61. Trissl, H.-W., Darszon, A., Montal, M. 1977. Rhosopsin in model membranes: Charge displacement in interfacial layers.Proc. Natl. Acad. Sci. USA 74:207–210

    Google Scholar 

  62. Van, S.P., Griffith, O.H. 1975. Bilayer structure in phospholipid-cytochromec model membranes.J. Membrane Biol. 20:155–170

    Google Scholar 

  63. Vorkink, W.P., Cusanovich, M.A. 1974. Photoreduction of horse heart cytochromec.Photochem. Photobiol. 19:205–215

    Google Scholar 

  64. Williams, R.J.P., Moore, G., Wright, P.E. 1977. Oxidation-reduction properties of cytochromes and peroxidases.In: Biological Aspects of Inorganic Chemistry. A.W. Addison, W.R. Cullen, D. Dolphin and B.R. James, editors. pp. 369–401. Wiley Interscience, New York

    Google Scholar 

  65. Zumft, W.G., Castillo, F., Hartmann, K.M. 1980. Flavinmediated photoreduction of nitrate by nitrate reductase of higher plants and microorganisms.In: The blue light syndrom. H. Senger, editor. pp. 422–428. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, W. Bluelight-induced, flavin-mediated transport of redox equivalents across artificial bilayer membranes. J. Membrain Biol. 82, 113–122 (1984). https://doi.org/10.1007/BF01868936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868936

Key Words

Navigation