The Journal of Membrane Biology

, Volume 82, Issue 2, pp 113–122 | Cite as

Bluelight-induced, flavin-mediated transport of redox equivalents across artificial bilayer membranes

  • Werner Schmidt


This paper continues our studies of physico-chemical properties of vesicle-bound flavins. Based on previous results, an advanced model system was designed in order to study the mechanisms underlying bluelight-induced redox transport across artificial membranes. The lumen of single-shelled vesicles was charged with cytochromec, and amphiphilic flavin (AF1 3, AF1 10) was bound to the membrane. Upon bluelight irradiation redox equivalents are translocated from exogeneous 1e(EDTA)-and 2e(BH3CN) donors across the membrane finally reducing the trapped cytochromec both under aerobic and anaerobic conditions. The mechanisms involved are explored and evidence for the involvement of various redox states of oxygen, dihydroflavin and flavosemiquinone is presented.

Key Words

single-shelled vesicle membrane redox transport, light-induced bluelight effect flavosemiquinone amphiphilic flavin superoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beinert, H. 1960. Flavin coenzymes.In: The Enzymes. P.D. Boyer, H. Lardy and K. Myrback, editors, Vol. 2, pp. 339–416. Academic, New York, LondonGoogle Scholar
  2. 2.
    Berns, D.S. 1976. Photosensitive bilayer membranes as model systems for photobiological processes.Photochem. Photobiol. 24:117–139Google Scholar
  3. 3.
    Brockerhoff, H. 1976. Molecular designs of membrane lipids.In: Bioorganic Chemistry. E. van Tamelen, editor. Vol. III, pp. 1–20. E. van Tamelen, editor. Academic, New YorkGoogle Scholar
  4. 4.
    Calvin, M. 1983. Artificial photosynthesis: Quantum capture and energy storage.Photochem. Photobiol. 37:349–360Google Scholar
  5. 5.
    Chen, C.H., Berns, D.S. 1976. Sensitivity of artificial bilayer membranes: Lipid chlorophyll interaction.Photochem. Photobiol. 24:255–260Google Scholar
  6. 6.
    Demel, R.A., De Kruyff, B. 1976. The function of sterols in membranes.Biochim. Biophys. Acta 457:109–132Google Scholar
  7. 7.
    Dodelet, J.-P., Lawrence, M.F., Ringnet, M., Leblance, R.M. 1981. Electron transfer from chlorophylla to quinone in mono- and multilayer arrays.Photochem. Photobiol. 33:713–720Google Scholar
  8. 8.
    Eichinger, D., Falk, H., Sobczak, R. 1983. Light driven transport of bilirubin through a bulk liquid membrane.Photochem. Photobiol. 38:193–195Google Scholar
  9. 9.
    Fee, J.A., Valentine, J.S. 1977. Chemical and physical properties of superoxide.In: Superoxide and superoxide dismutases. A.M. Michelson, J.M. McCord and I. Fridovich, editors. pp. 19–60. Academic, London, New York, San FranciscoGoogle Scholar
  10. 10.
    Fife, D.J., Moore, W.M. 1979. The reduction and quenching of photoexcited flavin by EDTA.Photochem. Photobiol. 29:43–47Google Scholar
  11. 11.
    Ford, W.E., Tollin, G. 1982. Chlorophyll photosensitized electron transfer in phospholipid vesicle bilayers: Insidevs. outside asymmetry.Photochem. Photobiol. 36:647–655Google Scholar
  12. 12.
    Fridovich, I. 1978. Superoxide radicals, superoxide dismutases and the anaerobic lifestyle.Photochem. Photobiol. 28:733–741Google Scholar
  13. 13.
    Futami, A., Hurt, E., Hauska, G. 1979. Vectorial redox reactions of physiological quinones. I. Requirements of a minimum chain length of the isoprenoid side chain.Biochim. Biophys. Acta 547:583–596Google Scholar
  14. 14.
    Georgevich, G., Roux, S.J. 1982. Permeability and structural changes induced by phytochrome in lipid vesicles.Photochem. Photobiol. 36:663–671Google Scholar
  15. 15.
    Goldsmith, M.H.M., Caubergs, R.J., Briggs, W.R. 1980. Light-inducible cytochrome reduction in membrane preparations from corn coleoptiles.Plant Physiol. 66:1067–1073Google Scholar
  16. 16.
    Grodowski, M.S., Veyret, B., Weiss, K. 1977. Photochemistry of flavins. II. Photophysical properties of alloxazines and isoalloxazines.Photochem. Photobiol. 26:341–352Google Scholar
  17. 17.
    Happe, M., Teather, R.M., Overath, P., Knobling, A., Oesterhelt, D. 1977. Direction of proton translocation in proteo liposomes from purple membrane and acidic lipids depends on the pH during reconstitution.Biochim. Biophys. Acta 465:415–420Google Scholar
  18. 18.
    Hauska, G. 1977a. Plasto- and ubiquinone as translocators of electrons and protons through membranes.FEBS Lett. 79:345–347Google Scholar
  19. 19.
    Hauska, G. 1977b. The permeability of quinones through membranes.In: Bioenergetics of membranes. L. Packer, G.C. Papageorgiou and A. Trebst editors. pp. 177–187. Elsevier/North-Holland Biomedical, AmsterdamGoogle Scholar
  20. 20.
    Hauska, G., Orlich, G. 1980. Electron and proton transport in biological membranes.J. Membr. Sci. 6:7–18Google Scholar
  21. 21.
    Hauska, G., Trebst, A. 1977. Proton translocation in chloroplasts.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 6, pp. 151–220. Academic, New York, San Francisco, LondonGoogle Scholar
  22. 22.
    Hemmerich, P., Massey, V., Michel, H., Schug, Ch. 1982. Scope and limitation of single electron transfer.In: Structure and Bonding. J.D. Dunitz, J.B. Goodenough, P. Hemmerich, J.A. Ibers, C.K. Jorgenson, J.B. Neilands, D. Reinen and R.J.P. Williams, editors. Vol. 48, pp. 93–123. Springer, Berlin, HeidelbergGoogle Scholar
  23. 23.
    Hinkle, P. 1970. A model system for mitochondrial ion transport and respiratory control.Biochem. Biophys. Res. Commun. 41:1375–1381Google Scholar
  24. 24.
    Hurley, J.K., Castelli, F., Tollin, G. 1981. Chlorophyllquinone photochemistry in liposomes: Mechanisms of radical formation and decay.Photochem. Photobiol. 34:623–631Google Scholar
  25. 25.
    Jain, M.K., Wagner, R.C. 1980. Facilitated transport.In: Introduction to Biological Membranes. Ch. 9. John Wiley & Sons, New York, Chichester, Brisbane, TorontoGoogle Scholar
  26. 26.
    Kano, K., Tanaka, Y., Ogawa, T., Shimomura, M., Kunitake, T. 1981. Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible cis-trans-isomerization of azobenzenes.Photochem. Photobiol. 34:323–329Google Scholar
  27. 27.
    Katagi, T., Yamamura, T., Saito, T., Sasaki, Y. 1981. Electron transport across lipid membranes photosensitized by amphiphilic zink porphyrin.Chem. Lett. pp. 503–506Google Scholar
  28. 28.
    Kim, I.-S., Song, P.-S. 1981. Binding of phytochrome to liposomes and protoplasts.Biochemistry 20:5482–5489Google Scholar
  29. 29.
    Klemm, E., Ninnemann, H. 1979. Nitrate reductase—A key enzyme in blue light-promoted conidiation and absorbance change ofNeurospora.Photochem. Photobiol. 29:629–632Google Scholar
  30. 30.
    Lancaster, J.R., Jr., 1981. Membrane-bound flavin adenine dinucleotide inMethanobacterium Bryantii.Biochem. Biophys. Res. Commun. 100:240–246Google Scholar
  31. 31.
    Michel, H., Hemmerich, P. 1981. Substitution of the flavin chromophore with lipophilic side chains: A novel membrane redox label.J. Membrane Biol. 60:143–153Google Scholar
  32. 32.
    Michelson, A.M. 1977. Chemical production of superoxide anions by reaction between riboflavin, oxygen, and reduced nicotinamide adenine dinucleotide. Specificity of tests for O2.In: Superoxide and Superoxide Dismutases. A.M. Michelson, B.M. McCord and I. Fridovich, editors. pp. 87–106. Academic, LondonGoogle Scholar
  33. 33.
    Mitchell, P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences.Science 206:1148–1159Google Scholar
  34. 34.
    Montal, M., Darszon, A., Strasser, R.J. 1978. Rhodopsin and bacteriorhodopsin in model membranes.In: Frontiers of Biological Energetics. P.L. Dutton, J.S. Leigh, and A. Scarpa, editors. Vol. II, pp. 1109–1117. Academic, London, New YorkGoogle Scholar
  35. 35.
    Naoi, M., Naoi, M., Shimizu, T., Malviya, A.N., Yagi, K. 1977. Permeability of amine acids into liposomes.Biochim. Biophys. Acta 471:305–310Google Scholar
  36. 36.
    Nicholls P. 1974. Cytochromec binding to enzymes and membranes.Biochim. Biophys. Acta 346:261–310Google Scholar
  37. 37.
    O'Brien, D.F. 1979. Light regulated permeability of rhodopsin-phospholipid membrane vesicles.Photochem. Photobiol. 29:679–685Google Scholar
  38. 38.
    Papa, S. 1976. Proton translocation reactions in the respiratory chains.Biochim. Biophys. Acta 456:39–84Google Scholar
  39. 39.
    Pohl, W.G., Teissie, J. 1975. The use of fluorescent probes for studying the interaction of proteins with black lipid membranes.Z. Naturforsch. 30c: 147–151Google Scholar
  40. 40.
    Raker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenine triphosphate formation.J. Biol. Chem. 249:662–663Google Scholar
  41. 41.
    Rumyantseva, G.V., Weiner, L.M., Molin, Yu., N. 1979. Permeation of liposome membrane by superoxide radical.FEBS Lett. 108:477–480Google Scholar
  42. 42.
    Samuel, D., Steckel, F. 1974. The physico-chemical properties of molecular oxygen.In: Molecular Oxygen in Biology. O. Hayaishi, editor. North Holland, AmsterdamGoogle Scholar
  43. 43.
    Schmidt, W. 1979. On the environment and the rotational motion of amphiphilic flavins in artificial membrane vesicles as studied by fluorescence.J. Membrane Biol. 47:1–25Google Scholar
  44. 44.
    Schmidt, W. 1980. Physiological bluelight reception.In: Structure and Bonding. P. Hemmerich, editor. Vol. 41, pp. 1–41. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  45. 45.
    Schmidt, W. 1980. A high performance dual wavelength spectrophotometer and fluorometer.J. Biochem. Biophys. Meth. 2:171–181Google Scholar
  46. 46.
    Schmidt, W. 1981. Fluorescence properties of isotropically and anisotropically embedded flavins.Photochem. Photobiol. 34:7–16Google Scholar
  47. 47.
    Schmidt, W. 1982. A computerized single beam spectrophotometer: An easy set-up.Anal. Biochem. 125:162–167Google Scholar
  48. 48.
    Schmidt, W. 1983. Further photophysical and photochemical characterization of flavins associated with single-shelled vesicles.J. Membrane Biol. 76:73–82Google Scholar
  49. 49.
    Schmidt, W. 1983. Capability of the on-line computer in fluorescence spectroscopy.Opt. Eng. 22:576–582Google Scholar
  50. 50.
    Schmidt W., Butler, W.L. 1976. Flavin-mediated photoreactions in artificial systems: A possible model for the blue light photoreceptor pigment in living systems.Photochem. Photobiol. 24:71–75Google Scholar
  51. 51.
    Schmidt, W., Hemmerich, P. 1981. On the redox reactions and accessibility of amphiphilic flavins in artificial membrane vesicles.J. Membrane Biol. 60:129–141Google Scholar
  52. 52.
    Senger, H. 1982. The effect of blue light on plants and microorganisms.Photochem. Photobiol. 35:911–920Google Scholar
  53. 53.
    Senger, H., Briggs, W.R. 1981. The blue light receptor(s): Primary reactions and subsequent metabolic changes.In: Photochemical and Photobiological Reviews. K.C. Smith, editor. Vol. 6, pp. 1–38. Plenum, New YorkGoogle Scholar
  54. 54.
    Song, P.-S. 1980. Primary photophysical and photochemical reactions: Theoretical background and general introduction.In: Photoreception and Sensory Transduction in Aneural Organisms. F. Lenci and G. Colombetti, editors. pp. 189–210. Plenum, New YorkGoogle Scholar
  55. 55.
    Song, P.-S. 1981. Photosensory transduction in Stentor coerulus and related organisms.Biochim. Biophys. Acta 639:1–29Google Scholar
  56. 56.
    Steinemann, A., Läuger, P. 1971. Interaction of cytochromec with phospholipid monolayers and bilayer membranes.J. Membrane Biol. 4:74–86Google Scholar
  57. 57.
    Takahashi, M.-A., Asada, K. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids.Arch. Biochem. Biophys. 226:558–566Google Scholar
  58. 58.
    Tien, H.T. 1968. Photoelectric effects in thin and bilayer lipid membranes in aqueous media.J. Phys. Chem. 72:4512–4519Google Scholar
  59. 59.
    Tien, H.T. 1976. Electronic processes and photoelectric aspects of bilayer lipid membranes.Photochem. Photobiol. 24:97–116Google Scholar
  60. 60.
    Traber, R., Kramer, H.E.A., Hemmerich, P. 1982. One and two electron transfer pathways in the photoreduction of flavin.Pure Appl. Chem. 54:1651–1665Google Scholar
  61. 61.
    Trissl, H.-W., Darszon, A., Montal, M. 1977. Rhosopsin in model membranes: Charge displacement in interfacial layers.Proc. Natl. Acad. Sci. USA 74:207–210Google Scholar
  62. 62.
    Van, S.P., Griffith, O.H. 1975. Bilayer structure in phospholipid-cytochromec model membranes.J. Membrane Biol. 20:155–170Google Scholar
  63. 63.
    Vorkink, W.P., Cusanovich, M.A. 1974. Photoreduction of horse heart cytochromec.Photochem. Photobiol. 19:205–215Google Scholar
  64. 64.
    Williams, R.J.P., Moore, G., Wright, P.E. 1977. Oxidation-reduction properties of cytochromes and peroxidases.In: Biological Aspects of Inorganic Chemistry. A.W. Addison, W.R. Cullen, D. Dolphin and B.R. James, editors. pp. 369–401. Wiley Interscience, New YorkGoogle Scholar
  65. 65.
    Zumft, W.G., Castillo, F., Hartmann, K.M. 1980. Flavinmediated photoreduction of nitrate by nitrate reductase of higher plants and microorganisms.In: The blue light syndrom. H. Senger, editor. pp. 422–428. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Werner Schmidt
    • 1
  1. 1.Privatdozent für BiophysikUniversität Konstanz, Fakultät für BiologieKonstanz IWest Germany

Personalised recommendations