Advertisement

The Journal of Membrane Biology

, Volume 81, Issue 1, pp 69–82 | Cite as

Characterization of calcium uptake into rough endoplamic reticulum of rat pancreas

  • E. Bayerdörffer
  • H. Streb
  • L. Eckhardt
  • W. Haase
  • I. Schulz
Articles

Summary

ATP-dependent Ca2+ uptake into isolated pancreatic acinar cells with permeabilized plasma membranes, as well as into isolated endoplasmic reticulum prepared from these cells, was measured using a Ca2+-specific electrode and45Ca2+. Endoplasmic reticulum was purified on an isopycnic Percoll gradient and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the rough endoplasmic reticulum RNA was enriched threefold and the typical marker for the plasma membrane Na+,K+(Mg2+)ATPase was decreased 20-fold. When different fractions of the Percoll gradient were compared,45Ca2+ uptake correlated with the RNA content and not with the Na+,K+(Mg2+)ATPase activity. The characteristics of nonmitochondrial Ca2+ uptake into leaky isolated cells and45Ca2+ uptake into isolated endoplasmic reticulum were very similar: Calcium uptake was maximal at 0.3 and 0.2 mmol/liter free Mg2+, at 1 and 1 mmol/liter ATP, at pH 6.0 and 6.5, and free Ca2+ concentration of 2 and 2 μmol/liter, respectively. Calcium uptake decreased at higher free Ca2+ concentration.45Ca2+ uptake was dependent on monovalent cations (Rb+>K+>Na+>Li+>choline+) and different anions (Cl>Br>SO 4 2− >NO 3 >I>cyclamate>SCN) in both preparations. Twenty mmol/liter oxalate enhanced45Ca2+ uptake in permeabilized cells 10-fold and in vesicles of endoplasmic reticulum, fivefold. Calcium oxalate precipitates in the endoplasmic reticulum of both preparations could be demonstrated by electron microscopy. The nonmitochondrial Ca2+ pool in permeabilized cells characterized in this study has been previously shown to regulate the cytosolic free Ca2+ concentration to 0.4 μmol/liter. Our results provide firm evidence that the endoplasmic reticulum plays an important role in the regulation of the cytosolic free Ca2+ concentration in pancreatic acinar cells.

Key Words

Ca2+ transport Ca2+ pools permeabilized cells rough endoplasmic reticulum pancreatic acinar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agostini, B., Hasselbach, W. 1971. Electron cytochemistry of calcium uptake in the fragmented sarcoplasmic reticulum.Histochemistry 28:55–67PubMedGoogle Scholar
  2. 2.
    Amsterdam, A., Jamieson, J.D. 1972. Structural and functional characterization of isolated pancreatic exocrine cells.Proc. Natl. Acad. Sci. USA 69:3028–3032PubMedGoogle Scholar
  3. 3.
    Bruns, D.E., McDonald, J.M., and Jarett, L. 1976. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes.J. Biol. Chem. 251:7191–7197PubMedGoogle Scholar
  4. 4.
    Case, R.M., Clausen, T. 1973. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas.J. Physiol. (London) 235:75–102Google Scholar
  5. 5.
    Chandler, D.E., Williams, J.A. 1978. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as a fluorescent probe.J. Cell Biol. 76:371–385PubMedGoogle Scholar
  6. 6.
    Chandler, D.E., Williams, J.A. 1978. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent chlorotetracycline.J. Cell Biol. 76:386–399PubMedGoogle Scholar
  7. 7.
    Chimoskey, J.E., Gergely, J. 1968. Effect of ions on sarcoplasmic reticulum fragments.Arch. Biochem. Biophys. 128:601–605PubMedGoogle Scholar
  8. 8.
    Chu, A., Bick, R.J., Tate, C.A., Van Winkle, W.B., Entman, M.L. 1983. Anion effects onin vitro sarcoplasmic reticulum function.J. Biol. Chem. 258:10543–10550PubMedGoogle Scholar
  9. 9.
    Chu, A., Tate, C.A., Bick, R.J., Van Winkle, W.B., Entman, M.L. 1983. Anion effects onin vitro sarcoplasmic reticulum function.j. Biol. Chem. 258:1656–1664PubMedGoogle Scholar
  10. 10.
    Clemente, F., Meldolesi, J. 1975. Calcium and pancreatic secretion-dynamics of subcellular calcium pools in resting and stimulated acinar cells.Br. J. Pharmacol. 55:369–379PubMedGoogle Scholar
  11. 11.
    Colca, J.R., McDonald, J.M., Kotagal, N., Patke, Ch., Fink, C.J., Greider, M.H., Lacy, P.E., McDaniel, M.L. 1982. Active calcium uptake by islet-cell endoplasmic reticulum.J. Biol. Chem. 257:7223–7228PubMedGoogle Scholar
  12. 12.
    Dormer, R.L., Williams, J.A. 1981. Secretagogue-induced changes in subcellular Ca2+ distribution in isolated pancreatic acini.Am. J. Physiol. 240:G130-G140PubMedGoogle Scholar
  13. 13.
    Duggan, P.F. 1977. Calcium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum.J. Biol. Chem. 252:1620–1627Google Scholar
  14. 14.
    Eimerl, S., Savion, N., Heichal, O., Selinger, Z. 1974. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium.J. Biol. Chem. 249:3991–3993PubMedGoogle Scholar
  15. 15.
    Gardner, J.D., Conlon, T.P., Klaeveman, H.L., Adams, T.D., Ondetti, M.A. 1975. Action of cholecystokinin and cholinergic agents on calcium transport in isolated pancreatic acinar cells.J. Clin. Invest. 56:366–375PubMedGoogle Scholar
  16. 16.
    Grover, A.K., Kwan, C.Y. 1983. Oxalate stimulation of ATP-dependent Ca-uptake in isolated smooth muscle membranes.Fed. Proc. 42:1278Google Scholar
  17. 17.
    Hasselbach, W. 1974. Sarcoplasmic ATPase.In: The Enzymes. P.D. Boyer, editor. Vol. 10, pp. 431–467. Academic, New YorkGoogle Scholar
  18. 18.
    Hatcher, D.W., Goldstein, G. 1969. Improved methods for determination of RNA and DNA.Anal. Biochem. 31:42–50PubMedGoogle Scholar
  19. 19.
    Heisler, S., Fast, D., Tenenhouse, A. 1972. Role of Ca2+ and cyclic AMP in protein secretion from rat exocrine pancreas.Biochim. Biophys. Acta 279:561–572PubMedGoogle Scholar
  20. 20.
    Henkart, P.H., Reese, T.S., Brinley, F.J., Jr. 1978. Endoplasmic reticulum sequesters calcium in the squid giant axon.Science 202:1300–1303PubMedGoogle Scholar
  21. 21.
    Hokin, L.E. 1966. Effects of calcium omission on acetylcholine-stimulated amylase secretion and phospholipid synthesis in pigeon pancreas slices.Biochim. Biophys. Acta 115:219–221PubMedGoogle Scholar
  22. 22.
    Immelmann, A., Söling, H.-D. 1983. ATP-dependent calcium sequestration and calcium/ATP stoichiometry in isolated microsomes from guinea pig parotid glands.FEBS 162:406–410Google Scholar
  23. 23.
    Inesi, G., Maring, E., Murphy, A.J., and McFarland, B.H. 1970. A study of the phosphorylated intermediate of the sarcoplasmic reticulum ATPase.Arch. Biochem. Biophys. 138:285–294PubMedGoogle Scholar
  24. 24.
    Iwatsuki, N., Petersen, O.H. 1977. Acetylcholine-like effects of intracellular calcium application in pancreatic acinar cells.Nature (London) 268:147–149Google Scholar
  25. 25.
    Jones, L.R., Besch, H.R., Watanabe, A.M. 1977. Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles.J. Biol. Chem. 252:3315–3323PubMedGoogle Scholar
  26. 26.
    Kanagasuntheram, P., Teo, T.S. 1982. Parotid microsomal Ca2+ transport.Biochem. J. 208:789–794PubMedGoogle Scholar
  27. 27.
    Kanazawa, T., Boyer, P.D. 1973. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles.J. Biol. Chem. 248:3163–3172PubMedGoogle Scholar
  28. 28.
    Knight, D.E., Koh, E. 1983. Direct evidence for a role of Cai2+ in amylase secretion from isolated rat pancreatic acinar cells.J. Physiol. (London) 345:107Google Scholar
  29. 29.
    Kondo, S., Schulz, I. 1976. Calcium ion uptake in isolated pancreas cells induced by secretagogues.Biochim. Biophys. Acta 419:76–92PubMedGoogle Scholar
  30. 30.
    Kribben, A., Tyrakowski, T., Schulz, I. 1983. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.Am. J. Physiol. 244:G480-G490PubMedGoogle Scholar
  31. 31.
    Lambert, M., Christophe, J. 1978. Characterization of (Mg, Ca)-ATPase activity in rat pancreatic plasma membranes.Eur. J. Biochem. 91:485–492PubMedGoogle Scholar
  32. 32.
    Lowry, O.H., Rosebrough, N.T., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  33. 33.
    Lucas, M., Galvan, A., Solano, P., Goberna, R. 1983. Compartmentation of calcium in digitonin-disrupted guinea pig pancreatic acinar cells.Biochim. Biophys. Acta 731:129–136PubMedGoogle Scholar
  34. 34.
    Lucas, M., Schmid, G., Kromas, R., Löffler, G., 1978. Calcium metabolism and enzyme secretion in guinea pig pancreas.Eur. J. Biochem. 85:609–619PubMedGoogle Scholar
  35. 35.
    McGraw, C.F., Somlyo, A.V., Blaustein, M.P. 1980. Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis.J. Cell Biol. 85:228–241PubMedGoogle Scholar
  36. 36.
    Meissner, G. 1981. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.J. Biol. Chem. 256:636–643PubMedGoogle Scholar
  37. 37.
    Meissner, G., McKinley, D. 1982. Permeability of canine cardiac sarcoplasmic reticulum vesicles to K+, Na+, H+ and Cl.J. Biol. Chem. 257:7704–7711PubMedGoogle Scholar
  38. 38.
    Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure.Z. Physiol. Chem. 258:117–120Google Scholar
  39. 39.
    Moore, L., Chen, T.S., Knapp, H.R., Jr., Landon, E.J. 1975. Energy-dependent calcium sequestration activity in rat liver microsomes.J. Biol. Chem. 250:4562–4568PubMedGoogle Scholar
  40. 40.
    Moore, L., Fitzpatrick, D.F., Chen, T.S., Landon, E.J. 1974. Calcium pump activity of the renal plasma membrane and renal microsomes.Biochim. Biophys. Acta 345:405–418Google Scholar
  41. 41.
    O'Doherty, J., Stark, R.J. 1982. Stimulation of pancreatic acinar secretion: Increases in cytosolic calcium and sodium.Am. J. Physiol. 242:G513-G521PubMedGoogle Scholar
  42. 42.
    Pertoft, H., Laurent, T.C., Seljelid, R. 1979. The use of density gradients of Percoll for the separation of biological particles.In: Separation of Cells and Subcellular Elements. H. Peeters, editor. pp. 67–72. Pergamon, Oxford and New YorkGoogle Scholar
  43. 43.
    Petersen, O.H., Iwatsuki, N. 1978. The role of calcium in pancreatic acinar cell stimulus-secretion coupling: An electrophysiological approach.Ann. N.Y. Acad. Sci. 307:599–617PubMedGoogle Scholar
  44. 44.
    Ponnappa, B.C., Dormer, R.L., Williams, J.A. 1981. Characterization of an ATP-dependent Ca2+ uptake system in mouse pancreatic microsomes.Am. J. Physiol. 240:G122-G129PubMedGoogle Scholar
  45. 45.
    Pozzan, T., Rink, T.J., Tsien, R.Y. 1981. Cytoplasmic pH and free Mg2+ in pig mesenteric lymphocytes.J. Physiol. (London) 319:102Google Scholar
  46. 46.
    Preissler, M., Williams, J.A. 1983. Localization of ATP-dependent calcium transport activity in mouse pancreatic microsomes.J. Membrane Biol. 73:137–144Google Scholar
  47. 47.
    Renckens, B.A.M., Schrijen, J.J., Swarts, H.G.P., De Pont, J.J.H.H.M., Bonting, S.L. 1978. Role of calcium in exocrine pancreatic secretion. IV. Calcium movements in isolated acinar cells of rabbit pancreas.Biochim. Biophys. Acta 544:338–350PubMedGoogle Scholar
  48. 48.
    Scharschmidt, B.F., Keeffe, E.B., Blankenship, N.M., Ockner, R.K. 1979. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg-and NaK-ATPase activity.J. Lab. Clin. Med. 93:790–799PubMedGoogle Scholar
  49. 49.
    Schulz, I. 1980. Messenger role of calcium in function of pancreatic acinar cells.Am. J. Physiol. 239:G335-G347PubMedGoogle Scholar
  50. 50.
    Schulz, I., Kimura, T., Wakasugi, H., Haase, W., Kribben, A. 1981. Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini.Philos. Trans. R. Soc. London B 296:105–113Google Scholar
  51. 51.
    Schulz, I., Wakasugi, H., Stolze, H., Kribben, A., Haase, W. 1981. Analysis of Ca2+ fluxes and their relation to enzyme secretion in dispersed pancreatic acinar cells.Fed. Proc. 40:2503–2510PubMedGoogle Scholar
  52. 52.
    Seals, J.R., McDonald, J.M., Bruns, D., Jarett, L. 1978. A sensitive and precise isotopic assay of ATPase activity.Anal. Biochem. 90:785–795PubMedGoogle Scholar
  53. 53.
    Sottocasa, G.L., Kuylenstierna, B., Ernster, L., Bergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria.J. Cell Biol. 32:415–436PubMedGoogle Scholar
  54. 54.
    Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy.J. Ultrastruct. Res. 26:31–43PubMedGoogle Scholar
  55. 55.
    Stolze, H., Schulz, I. 1980. Effect of atropine, ouabain, antimycin A, and A23187 on “trigger Ca2+ pool” in exocrine pancreas.Am. J. Physiol. 238:G338-G348PubMedGoogle Scholar
  56. 56.
    Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69Google Scholar
  57. 57.
    Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas.Am. J. Physiol. 245:G347-G357PubMedGoogle Scholar
  58. 58.
    The, R., Hasselbach, W. 1972. The modification of the reconstituted sarcoplasmic ATPase by monovalent cations.Eur. J. Biochem. 30:318–324PubMedGoogle Scholar
  59. 59.
    The, R., Hasselbach, W. 1975. The action of chaotropic anions on the sarcoplasmic calcium pump.Eur. J. Biochem. 53:105–113Google Scholar
  60. 60.
    Udenfriend, S., Stein, S., Böhlen, P., Dairman, W., Lerngruber, W., Weigele, M. 1972. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, primary amines in the picomole range.Science 178:871–872PubMedGoogle Scholar
  61. 61.
    Wakasugi, H., Kimura, T., Haase, W., Kribben, A., Kaufmann, R., Schulz, I. 1982. Calcium uptake into acini from rat pancreas: Evidence for intracellular ATP-dependent calcium sequestration.J. Membrane Biol. 65:205–220Google Scholar
  62. 62.
    Wibo, M., Morel, N., Godfraind, T. 1981. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle.Biochim. Biophys. Acta 649:651–660PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • E. Bayerdörffer
    • 1
  • H. Streb
    • 1
  • L. Eckhardt
    • 1
  • W. Haase
    • 1
  • I. Schulz
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt-70Germany

Personalised recommendations