Skip to main content
Log in

Linear electrical properties of isolated cardiac cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A frequency domain equivalent circuit analysis of isolated ventricular cells indicated the presence of an internal membrane structure which has a total capacitance four- to sixfold larger than the surface membrane. The internal membrane was mainly attributed to the sarcoplasmic reticulum since other morphological studies have shown that its area is many-fold larger than that of the surface membrane. Corresponding estimates from the transverse tubular system indicate an area less than that of the surface; thus this structure is not a likely candidate for the observed internal capacitance. Measurements in hypertonic solutions showed that the access resistance to the internal membrane reversibly increased as the tonicity was elevated. Freeze-fractured electron microscopic studies confirmed that hypertonic solutions increased the volume of transverse tubular system, which thus appears to have little relation to the access resistance. The most probable source of the access resistance is the diadic junction to the sarcoplasmic reticulum, which therefore would electrically couple it to the surface membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attwell, D., Cohen, I. 1977. The voltage clamp of multicellular preparations.Prog. Biophys. Mol. Biol. 31:201–245

    PubMed  Google Scholar 

  • Beeler, G.W., McGuigan, J.A.S. 1978. Voltage clamping of multicellular preparations. Capabilities and limitations of existing methods.Prog. Biophys. Mol. Biol. 34:219–254

    PubMed  Google Scholar 

  • Bevington, P.R. 1969. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York

    Google Scholar 

  • Brown, A.M., Lee, K.S., Powell, T. 1981a. Voltage clamp and internal perfusion of single rat heart muscle cells.J. Physiol. (London) 318:455–477

    Google Scholar 

  • Brown, A.M., Lee, K.S., Powell, T. 1981b. Sodium current in single rat heart muscle cells.J. Physiol. (London) 318:479–500

    Google Scholar 

  • Carmeliet, E., Williams, J. 1971. The frequency dependent character of the membrane capacity in cardiac Purkinje fibres.J. Physiol. (London) 213:85–93

    Google Scholar 

  • Clapham, D.E., DeFelice, L.J. 1982. Small signal impedance of heart cell membranes.J. Membrane Biol. 67:63–71

    Google Scholar 

  • Dahl, G., Isenberg, G. 1980. Decoupling in heart muscle cells: Correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure.J. Membrane Biol. 53:63–75

    Google Scholar 

  • Deck, K.A., Kern, R., Trautwein, W. 1964. Voltage clamp technique in mammalian cardic fibres.Pfuegers Arch. 280:50–62

    Google Scholar 

  • Deck, K.A., Trautwein, W. 1964. Ionic currents in cardiac excitation.Pfluegers Arch. 280:63–80

    Google Scholar 

  • Dow, J.W., Harding, N.G.L., Powell, T. 1981. Isolated cardiac myocytes. I. Preparation of adult myocytes and their homology with intact tissue.Cardiovasc. Res. 15:483–514

    PubMed  Google Scholar 

  • Dreyer, F., Peper, K. 1974. Ionophoretic application of acetylcholine: Advantage of high resistance micropipettes in connection with an electronic current pump.Pfluegers Arch. 348:253–272

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W. 1966. Excitatory membrane current in heart muscle (Purkinje fibers).Pflueger's Arch. ges. Physiol. 292:255–273

    Google Scholar 

  • Eisenberg, R.S. 1967. The equivalent circuit of single crab muscle fibers as determined by impedance measurements with intracellular electrodes.J. Gen. Physiol. 53:279–297

    Google Scholar 

  • Engel, E., Barcilon, V., Eisenberg, R.S. 1972. The interpretation of current voltage relations recorded from a spherical cell with a single microelectrode.Biophys. J. 12:384–403

    PubMed  Google Scholar 

  • Falk, G., Fatt, P. 1964. Linear electrical properties of striated muscle fibers observed with intracellular electrodes.Proc. R. Soc. London B 160:69–123

    Google Scholar 

  • Franzini-Armstrong, C., Heuser, J.E., Rease, T.S., Somlyo, A.P., Somlyo, A.V. 1978. T-tubule swelling in hypertonic solutions: A freeze substitution study.J. Physiol. (London) 283:133–140

    Google Scholar 

  • Freygang, W.H., Jr., Rapoport, S.I., Peachy, L.D. 1976. Some relations between changes in linear electrical properties of striated muscle and changes in ultrastructure.J. Gen. Physiol. 50:2437–2458

    Google Scholar 

  • Freygang, W.H., Trautwein, W. 1970. The structural implications of the linear electrical properties of cardiac Purkinje strands.J. Gen. Physiol. 55:524–547

    PubMed  Google Scholar 

  • Fozzard, H.A. 1966. Membrane capacity of the cardiac Purkinje fibre.J. Physiol. (London) 182:255–267

    Google Scholar 

  • Glick, M.R., Burns, A.H., Reddy, W.J. 1974. Dispersion and isolation of beating cells from adult rat heart.Anal. Biochem. 61:32–42

    PubMed  Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  • Hellam, D.C., Studt, J.W. 1974. Linear analysis of membrane conductance and capacitance in cardiac Purkinje fibres.J. Physiol. (London) 243:661–694

    Google Scholar 

  • Hume, J.R., Giles, W. 1981. Active and passive electrical properties of single bullfrog atrial cells.J. Gen. Physiol. 78:19–42

    PubMed  Google Scholar 

  • Isenberg, G. 1976. Cardiac Purkinje fibers: Cesium as a tool to block inward rectifying potassium currents.Pfluegers Arch. 356:99–106

    Google Scholar 

  • Isenberg, G., Kloeckner, U. 1980. Glycocalix is not required for slow inward calcium current in isolated rat heart myocytes.Nature (London) 284:358–360

    Google Scholar 

  • Isenberg, G., Kloeckner, U. 1982a. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”.Pfluegers Arch. 395:6–18

    Google Scholar 

  • Isenberg, G., Kloeckner, U. 1982b. Isolated bovine ventricular myocytes, characterization of the action potential.Pfluegers Arch. 395:19–29

    Google Scholar 

  • Isenberg, G., Kloeckner, U. 1982c. Calcium currents of isolated bovine ventricular myocytes are fast and of large amplitude.Pfluegers Arch. 395:30–41

    Google Scholar 

  • Isenberg, G., Vereecke, F., Heyden, G. van der, Carmeliet, E. 1983. The shortening of the action potential by DNP in guinea pig ventricular myocytes is mediated by an increase of a time independent K conductance.Pfluegers Arch. 397:251–259

    Google Scholar 

  • Johnson, E.A., Lieberman, M. 1971. Heart: Excitation and contraction.Annu. Rev. Physiol. 33:479–532

    PubMed  Google Scholar 

  • Mathias, R., Ebihara, L., Lieberman, M., Johnson, E.A. 1981. Linear electrical properties of passive and active currents in spherical heart cell clusters.Biophys. J. 36:221–242

    PubMed  Google Scholar 

  • Mathias, R.T., Levis, R.A., Eisenberg, R.S. 1980. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle.J. Gen. Physiol. 76:1–33

    PubMed  Google Scholar 

  • Moore, L.E., Tsai, T.D. 1983. Ion conductances of the surface and transverse tubular membranes of skeletal muscle.J. Membrane Biol. 73:217–226

    Google Scholar 

  • Page, E. 1968. Correlations between electron microscopic and physiological observations in heart muscle.J. Gen. Physiol. 51:211s-220s

    PubMed  Google Scholar 

  • Page, E. 1978. Quantitative ultrastructural analysis in cardiac membrane physiology.Am. J. Physiol. 235(5):C147-C158

    PubMed  Google Scholar 

  • Page, E., Surdyk-Droske, M. 1979. Distribution, surface density, and membrane area of diadic junctional contracts between plasma membrane and terminal cisterns in mammalian ventricle.Circ. Res. 45:260–267

    PubMed  Google Scholar 

  • Page, E., Upshaw-Earley, J. 1977. Volume changes in sarcoplasmic reticulum of rat hearts perfused with hypertonic solutions.Circ. Res. 40:355–366

    PubMed  Google Scholar 

  • Peskoff, A., Eisenberg, R.S. 1973. Interpretation of some microelectrode measurements of electrical properties of cells.Annu. Rev. Biophys. Bioeng. 2:65–80

    PubMed  Google Scholar 

  • Powell, T., Terrar, D.A., Twist, V.W. 1980. Electrical properties of individual cells isolated from the adult rat ventricular myocardium.J. Physiol. (London) 302:131–153

    Google Scholar 

  • Poussart, D., Moore, L.E., Fishman, H. 1977. Ion movements and kinetics in squid axon. I. Complex admittance.Ann. N.Y. Acad. Sci. 303:355–379

    PubMed  Google Scholar 

  • Schneider, M. 1970. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers.J. Gen. Physiol. 56:640–671

    PubMed  Google Scholar 

  • Sommer, J., Johnson, E.A. 1979. The ultrastructure of cardiac muscle.In: Handbook of Physiology. Section 2: Vol 1, pp. 113–186. R.M. Berne, N. Sperelakis, and S.R. Geiger, editors. American Physiological Society, Bethesda

    Google Scholar 

  • Sommer, J.R., Waugh, R.A. 1976. The ultrastructure of the mammalian cardiac muscle cell—with special emphasis on the tubular-membrane systems.Am. J. Pathol. 82:192–232

    PubMed  Google Scholar 

  • Sperelakis, N., Forbes, M.S., Rubio, R. 1974. The tubular systems of myocardial cells: Ultrastructure and possible function.In: Myocardial Biology: Recent Advances in Studies on Cardiac Structure and Metabolism. Vol. 4, pp. 163–194. N.S. Dhalla, editor. University Park Press, Baltimore

    Google Scholar 

  • Valdiosera, R., Clausen, C., Eisenberg, R.S. 1974. Impedance of frog skeletal muscle fibers in various solutions.J. Gen. Physiol. 63:460–491

    PubMed  Google Scholar 

  • Verrecke, J., Isenberg, G., Carmeliet, E. 1980. K efflux through inward rectifying K channels in voltage clamped Purkinje fibers.Pfluegers Arch. 384:207–217

    Google Scholar 

  • Weidmann, S. 1970. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. (London) 210:1041–1054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, L.E., Schmid, A. & Isenberg, G. Linear electrical properties of isolated cardiac cells. J. Membrain Biol. 81, 29–40 (1984). https://doi.org/10.1007/BF01868807

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868807

Key Words

Navigation