The Journal of Membrane Biology

, Volume 46, Issue 4, pp 359–384 | Cite as

Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles

  • James Dilger
  • Stuart McLaughlin
Article

Summary

We report here a kinetic study of the mechanism by which the weak acid TTFB (4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole) transports protons across phospholipid bilayer membranes. A previous kinetic study of the homologous dichloro compound, DTFB, revealed that the rate limiting step for proton translocation was the back diffusion of the neutral, HA, form of the weak acid; we conclude here that this is also the rate limiting step for proton translocation with TTFB. At high concentrations of either DTFB or TTFB the charged permeant species is an HA 2 complex. The kinetic analysis and independent measurements reveal that the permeability of the membrane to HA and adsorption coefficients of A and HA are an order of magnitude higher for TTFB than for DTFB. When either DTFB or TTFB was present in a solution where the pH was less than the pK of the weak acid, an unusual relaxation in the current was noted on application of a voltage step. The amplitude of the relaxation decreased as the voltage was increased. This relaxation is possibly due to a reorientation of the benzimidazole molecules at the membrane-solution interface. We also report experiments performed with DTFB on mitochondria. It was possible to reconcile these results with the bilayer data and, therefore, with the chemiosmotic hypothesis by postulating that the dielectric constant of the mitochondrial membrane is greater than that of a bilayer formed with decane as a solvent. To demonstrate the effect of dielectric constant on permeability, we replaced decane by 1-chlorodecane. This increased the capacitance of the artificial bilayer by a factor of two and the permeability of the bilayer to the A form of DTFB by two orders of magnitude.

Keywords

Decane Benzimidazole Weak Acid Dichloro Phospholipid Bilayer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acheson, R.M., Taylor, G.A., Tomlinson, M.L. 1958. The synthesis of some benzimidazoles.J. Chem. Soc. 195:3750Google Scholar
  2. 2.
    Anderson, O.S., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35PubMedGoogle Scholar
  3. 3.
    Aveyard, R., Haydon, D.A. 1973. An Introduction to the Principles of Surface Chemistry. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Bakker, E.P., Arents, J.C., Hoebe, J.P.M., Terada, H. 1973. Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria,Biochim. Biophys. Acta 387:491Google Scholar
  5. 5.
    Bangham, A.D., Flemans, R., Heard, D.H., Seaman, G.V.F. 1958. An apparatus for microelectrophoresis of small particles.Nature (London) 183:642Google Scholar
  6. 6.
    Bangham, A.D., Hill, M.W., Miller, N.G.A. 1974. Preparation and use of liposomes as models of biological membranes.Methods Membr. Biol. 1:1Google Scholar
  7. 7.
    Blazyk, J.F., Steim, J.M. 1972. Phase transitions in mammalian membranes.Biochim. Biophys. Acta 266:737PubMedGoogle Scholar
  8. 8.
    Boguslavsky, L.I., Yaguzhinsky, L.S., Ismailov, A.D. 1977. Reactions of mitochondrial NADH-dehydrogenase coenzymes on bilayer membranes.Bioelectrochem. Bioenerg. 4:155Google Scholar
  9. 9.
    Borisova, M.P., Ermishkin, L.N., Liberman, E.A., Silberstein, A.Y., Trofimov, E.M. 1974. Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole.J. Membrane Biol. 18:243Google Scholar
  10. 10.
    Büchel, K.H., Korte, F., Beechey, R.B. 1965. Uncoupling of the oxidative phosphorylation in mitochondria by NH-acidic benzimidazoles.Angew. Chem. Int. Ed. Engl. 4:788PubMedGoogle Scholar
  11. 11.
    Ciani, S. 1976. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: II. A theoretical model.J. Membrane Biol. 30:45Google Scholar
  12. 12.
    Cohen, F.S., Eisenberg, M., McLaughlin, S. 1977. The kinetic mechanism of action of an uncoupler of oxidative phosphorylation.J. Membrane Biol. 37:361Google Scholar
  13. 13.
    Cunarro, J., Weiner, M.W. 1975. Mechanism of action of agents which uncouple oxidative phorylation: Direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.Biochim. Biophys. Acta 387:234PubMedGoogle Scholar
  14. 14.
    Dix, J.A., Kivelson, D., Diamond, J.M. 1978. Molecular motion of small nonelectrolyte molecules in lecithin bilayer.J. Membrane Biol. 40:315Google Scholar
  15. 15.
    Dragsten, P.R., Webb, W.W. 1977. Mechanism of membrane potential sensitivity of the fluorescent membrane probe merocyanine 540.Biochemistry. 17:5228Google Scholar
  16. 16.
    Fahey, P.F., Koppel, D.E., Barak, L.S., Wolf, D.E., Elson, Webb, W.W. 1977. Lateral diffusion in planar lipid bilayers.Science 195:305PubMedGoogle Scholar
  17. 17.
    Fettiplace, R., Andrews, D.M., Haydon, D.A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277Google Scholar
  18. 18.
    Finkelstein, A. 1970. Weak-acid uncouplers of oxidative phosphorylation. Mechanism of action on thin lipid membranes.Biochim. Biophys. Acta 205:1PubMedGoogle Scholar
  19. 19.
    Finkelstein, A. 1976. Water and nonelectrolyte permeability of lipid bilayer membranes.J. Gen. Physiol. 68:127PubMedGoogle Scholar
  20. 20.
    Foster, M., McLaughlin, S. 1974. Complexes between uncouplers of oxidative phosphorylation.J. Membrane Biol. 17:155Google Scholar
  21. 21.
    Glagoleva, I.M., Liberman, Y.A., Khashayev, Z.K.M. 1970. Effect of uncoupling agents of oxidative phosphorylation on the release of acetylcholine from nerve endings.Biofizika 15:76PubMedGoogle Scholar
  22. 22.
    Hanstein, W.G. 1976. Uncoupling of oxidative phosphorylation.Biochim. Biophys. Acta 456:129PubMedGoogle Scholar
  23. 23.
    Hauser, H.O. 1971. The effect of ultrasonic irradiation on the chemical structure of egg lecithin.Biochem. Biophys. Res. Commun. 45:1049Google Scholar
  24. 24.
    Henry, D.C. 1938. A source of error in micro-cataphoretic measurements with a cylindrical-bore cell.J. Chem. Soc., p. 997Google Scholar
  25. 25.
    Hladky, S.B. 1972. The steady-state theory of the carrier transport of ions.J. Membrane Biol. 10:67Google Scholar
  26. 26.
    Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes.Biochim. Biophys. Acta 352:71PubMedGoogle Scholar
  27. 27.
    Hladky, S.B. 1979. The carrier mechanism.Curr. Top. Membr. Transp. (in press) Google Scholar
  28. 28.
    Hsia, J.C., Chen, W.L., Long, R.A., Wong, L.T., Kalow, W. 1972. Existence of phospholipid bilayer structure in the inner membrane of mitochondria.Proc. Nat. Acad. Sci. USA 69:3412PubMedGoogle Scholar
  29. 29.
    Huang, C., Charlton, J.P. 1972. Interactions of phosphatidylcholine vesicles with 2-p-toluidinylnaphthalene-6-sulfonate.Biochemistry 11:735PubMedGoogle Scholar
  30. 30.
    Jones, O.T.G., Watson, W.A. 1967. Properties of substituted 2-trifluoromethylbenzimidazoles as uncouplers of oxidative phosphorylation.Biochem. J. 102:564PubMedGoogle Scholar
  31. 31.
    Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225Google Scholar
  32. 32.
    Läuger, P., Neumcke, B. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes.In: Membranes. A Series of Advances. G. Eisenman, editor. Vol. 3, p. 1. Marcel Dekker, New YorkGoogle Scholar
  33. 33.
    Lea, E.J.A., Croghan, P.C. 1969. The effect of 2,4-dinitrophenol on the properties of thin phospholipid films.J. Membrane Biol. 1:225Google Scholar
  34. 34.
    LeBlanc, O.H. 1971. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227Google Scholar
  35. 35.
    Liberman, Y.A., Babakov, A.V. 1968. Diminishing characteristics and impedance of phospholipid membranes in the presence of tetrachlorotrifluoromethylbenzimidazole (TTFB).Biofizika 13:362PubMedGoogle Scholar
  36. 36.
    Liberman, Y.A., Mokhava, Y.N., Skulachev, V.P., Topaly, V.P. 1968. Effect of uncoupling agents of oxidative phosphorylation on bimolecular phospholipid membranes.Biofizika 13:188PubMedGoogle Scholar
  37. 37.
    Liberman, E.A., Topaly, V.P. 1968. Selective transport of ions through bimolecular phospholipid membranes.Biochim. Biophys. Acta 163:125PubMedGoogle Scholar
  38. 38.
    Liberman, E.A., Topaly, V.P., Tsofina, L.M., Jasaitis, A.A., Skulachev, V.P. 1969. Mechanisms of coupling of oxidative phosphorylation and the membrane potential of mitochondria.Nature (London) 22:1076Google Scholar
  39. 39.
    Lowry, R.R., Tinsley, I.J. 1974. A simple, sensitive method for lipid phosphorus.Lipids 9:491PubMedGoogle Scholar
  40. 40.
    Markin, V.S., Krishtalik, L.I., Liberman, Y.A., Topaly, V.P. 1969. Mechanism of conductivity of artificial phospholipid membranes in presence of ion carriers.Biofizika 14:256PubMedGoogle Scholar
  41. 41.
    McLaughlin, S. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361Google Scholar
  42. 42.
    McLaughlin, S. 1975. Local anesthetics and the electrical properties of phospholipid bilayer membranes.In: Molecular Mechanism of Anesthesia. B.R. Fink, editor. Vol. 1, p. 193. Raven, New YorkGoogle Scholar
  43. 43.
    McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp.9:71Google Scholar
  44. 44.
    McLaughlin, A., Grathwohl, C., McLaughlin, S. 1978. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.Biochim. Biophys. Acta 513:338PubMedGoogle Scholar
  45. 45.
    McLaughlin, S., Harary, H. 1976. The hydrophobic adsorption of charged molecules to bilayer membranes: A test of the applicability of the Stern equation,Biochemistry 15:1941PubMedGoogle Scholar
  46. 46.
    Mitchell, P. 1976. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling power transmission by proticity.Biochem. Soc. Trans. 4:399PubMedGoogle Scholar
  47. 47.
    Mitchell, P., Moyle, J. 1967. Acid-base titration across the membrane system of rat liver mitochondria. Catalysis by uncouplers.Biochem. J. 104:588PubMedGoogle Scholar
  48. 48.
    Neumcke, B., Bamberg, E. 1975. The action of uncouplers on lipid bilayer membranes.In: Lipid Bilayers and Biological Membranes: Dynamic Properties. G. Eisenman, editor. p. 215. Marcel Dekker, New YorkGoogle Scholar
  49. 49.
    Neumcke, B., Läuger, P. 1970. Space charge-limited conductance in lipid bilayer membranes.J. Membrane Biol. 3:54Google Scholar
  50. 50.
    Nicholls, D.G. 1974. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution.Eur. J. Biochem. 50:305PubMedGoogle Scholar
  51. 51.
    Parsegian, V.A. 1975. Ion-membrane interactions as structural forces.Ann. N.Y. Acad. Sci. 264:161PubMedGoogle Scholar
  52. 52.
    Poonia, N.S. 1975. Complexation of sodium and potassium with macrocyclic poly-ethers: Activation of the counter ions.J. Inorg. Nucl. Chem. 37:1855Google Scholar
  53. 53.
    Poznansky, M., Tong, S., White, P.C., Milgram, J.M., Solomon, A.K. 1976. Nonelectrolyte diffusion across lipid bilayer systems.J. Gen. Physiol. 67:45Google Scholar
  54. 54.
    Requina, J., Haydon, D.A. 1975. Van der Waals forces in oil-water systems from the study of thin lipid films: II. The dependence of the van der Waals free energy of thinning on film composition and structure.Proc. R. Soc. Lond. A347:161Google Scholar
  55. 55.
    Ross, W.N., Salzberg, B.M., Cohen, L.B., Davila, H.V. 1974. A large change in dye absorption during the action potential.Biophys. J. 14:983PubMedGoogle Scholar
  56. 56.
    Schneider, W.C. 1948. Intracellular distribution of enzymes: III. The oxidation of octanoic acid by rat liver fractions.J. Biol. Chem. 176:259Google Scholar
  57. 57.
    Shaw, D.J. 1969. Electrophoresis. Academic Press, New YorkGoogle Scholar
  58. 58.
    Simon, S.A. 1977. A comment on the water permeability through planar lipid bilayers.J. Gen. Physiol. 70:124Google Scholar
  59. 59.
    Smejtek, P., Hsu, K., Perman, W.H. 1976. Electrical conductivity in lipid bilayer membranes induced by pentachlorophenol.Biophys. J. 16:319PubMedGoogle Scholar
  60. 60.
    Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981PubMedGoogle Scholar
  61. 61.
    Tanford, C. 1978. The hydrophobic effect and the organization of living matterScience 200:1012PubMedGoogle Scholar
  62. 62.
    Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47PubMedGoogle Scholar
  63. 63.
    White, D.A. 1973. The phospholipid composition of mammalian tissues.In: Form and function of Phospholipids. G.B. Ansell, J.N. Hawthorne, and R.M.C. Dawson, editors. p. 441 Elsevier, New YorkGoogle Scholar
  64. 64.
    White, S. 1977. Studies of the physical chemistry of planar bilayer membranes using high precision measurements of specific capacitance.Ann. N.Y. Acad. Sci. 303:243PubMedGoogle Scholar
  65. 65.
    Wilson, D.F. 1969. The stoichiometry and site specificity of the uncoupling of mitochondrial oxidative phosphorylation by salicylanilide derivatives.Biochemistry 8:2475PubMedGoogle Scholar
  66. 66.
    Wilson, D.F., Ting, H.P., Koppelman, M.S. 1971. Mechanism of action of uncouplers of oxidative phosphorylation.Biochemistry 10:2897PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1979

Authors and Affiliations

  • James Dilger
    • 1
  • Stuart McLaughlin
    • 1
  1. 1.Department of Physiology and Biophysics, Health Sciences CenterState University of New YorkStony Brook

Personalised recommendations