The Journal of Membrane Biology

, Volume 83, Issue 1–2, pp 147–156 | Cite as

The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells

  • D. E. Knight
  • P. F. Baker
Articles

Summary

Calcium-dependent exocytosis in ‘leaky’ bovine adrenal medullary cells has a requirement for Mg-ATP. One possibility is that exocytosis depends in some way on the operation of the ATP-dependent proton pump that serves to maintain the core of the secretory vesicles both acid and at a positive potential with respect to the cytosol. This possibility has been tested in ‘leaky’ cells by monitoring exocytosis under conditions where the secretory vesicle pH and potential gradients are measuredin situ. The results show rather clearly that exocytosis can persist, with unchanged Ca-activation kinetics, in the virtual absence both of a difference in pH between the cytosol and secretory vesicle core and also of a difference in potential across the vesicle membrane. The results do not, however, exclude a small modulating effect of vesicle pH or potential on exocytosis and shed no light on whether or not the plasma membrane potential, which is maintained close to zero in these experiments, influences exocytosis.

Key Words

Exocytosis proton pump calcium secretion adrenal medulla 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, P.F., Knight, D.E. 1978a. A high voltage technique for gaining rapid access to the interior of secretory cells.J. Physiol. (London) 284:30P Google Scholar
  2. Baker, P.F., Knight, D.E. 1978b. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes.Nature (London) 276:620–622Google Scholar
  3. Baker, P.F., Knight, D.E. 1981. Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells.Phil. Trans. R. Soc. London B 296:83–103Google Scholar
  4. Baker, P.F., Knight, D.E. 1982. Is the chromaffin granule membrane potential essential for Ca-dependent exocytosis?J. Physiol. (London) 326:10P Google Scholar
  5. Bashford, C.L., Casey, R.P., Radda, G.K., Ritchie, R.A. 1975. The effect of uncouplers on catecholamine incorporation by vesicles of chromaffin granules.Biochem. J. 148:153–155PubMedGoogle Scholar
  6. Casey, R.P., Njus, D., Radda, G.K., Sehr, P.A. 1977. Active proton uptake by chromaffin granules: Observation by amine distribution and phosphorous 31 nuclear magnetic resonance techniques.Biochemistry 16:972–976PubMedGoogle Scholar
  7. Holz, R.W., Senter, R.A., Sharp, R.R. 1983. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis.J. Biol. Chem. 258:7506–7513PubMedGoogle Scholar
  8. Johnson, R.G., Pfister, D., Carty, S.E., Scarpa, A. 1979. Biological amine transport in chromaffin ghosts: Coupling to the transmembrane proton and potential gradients.J. Biol. Chem. 254:10963–10972PubMedGoogle Scholar
  9. Johnson, R.G., Scarpa, A. 1976a. Internal pH of isolated chromaffin vesicles.J. Biol. Chem. 251:2189–2191PubMedGoogle Scholar
  10. Johnson, R.G., Scarpa, A. 1976b. Ion permeability of isolated chromaffin granules.J. Gen. Physiol. 68:601–631PubMedGoogle Scholar
  11. Johnson, R.G., Scarpa, A. 1979. Protonmotive force and catecholamine transport in isolated chromaffin granules.J. Biol. Chem. 254:3750–3760PubMedGoogle Scholar
  12. Kirshner, N., Smith, W.J. 1969. Metabolic requirements for secretion from the adrenal medulla.Life Sci. 8:799–803PubMedGoogle Scholar
  13. Knight, D.E., Baker, P.F. 1982. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields.J. Membrane Biol. 68:107–140Google Scholar
  14. Mahler, H.R., Cordes, E.H. 1971. Biological Chemistry. (2nd ed.) p. 13. Harper & Row, LondonGoogle Scholar
  15. Phillips, I.H., Allison, Y.P. 1978. Proton translocation by the bovine chromaffin-granule membrane.Biochem. J. 170:661–672PubMedGoogle Scholar
  16. Pollard, H.B., Zinder, O., Hoffman, P.G., Nikodejevic, O. 1976. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogues and external pH.J. Biol. Chem. 251:4544–4550PubMedGoogle Scholar
  17. Rubin, R.P. 1970. The role of energy metabolism in calcium evoked secretion from the adrenal medulla.J. Physiol. (London) 206:181–192Google Scholar
  18. Salama, G., Johnson, R.G., Scarpa, A. 1980. Spectrophotometric measurements of transmembrane potential and pH gradients in chromaffin granules.J. Gen. Physiol. 75:109–140PubMedGoogle Scholar
  19. Toll, L., Howard, B.D. 1980. Evidence that an ATPase and a protonmotive force function in the transport of acetylcholine into storage vesicles.J. Biol. Chem. 255:1787–1789PubMedGoogle Scholar
  20. Winkler, H., Carmichael, S.W. 1982. The chromaffin granule.In: The Secretory Granule. A.M. Poisner and J.M. Trifaro, editors. pp. 3–79. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. E. Knight
    • 1
  • P. F. Baker
    • 1
  1. 1.Department of PhysiologyKing's CollegeLondonEngland

Personalised recommendations