Skip to main content
Log in

Changes in paracellular and cellular ionic permeabilities of monolayers of MDCK cells infected with influenza or vesicular stomatitis viruses

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

MDCK cells (epithelioid line derived from the kidney of a normal dog) form monolayers which retain the properties of transporting epithelia. In these cells viruses bud asymmetrically: influenza from the apical, and vesicular stomatitis (VSV) from the basolateral membrane (E. Rodríguez-Boulán and D. D. Sabatini,Proc. Natl. Acad. Sci. USA 75: 5071–5075, 1978; E. Rodríguez-Boulán and M. Pendergast,Cell 20: 45–54, 1980). In the present study, we analyzed whether these viruses affect specific ion-translocating mechanisms located in the plasma membrane. We studied the effect of infection on membrane and transepithelial conductance, passive and active unidirectional fluxes of Na+ and K+, intracellular potentials, cellular content of Na+ and K+, and formation of blisters which, in these preparations, are due to the vectorial transport of fluid. Two main observations are derived from these studies. First, infection with VSV caused an increase in transepithelial electrical conductance, due to the opening of tight junctions, 5 to 6 hr after the start of infection, coincident with the accumulation of envelope protein in the cell surface and with the rise in the curve of virus budding. Infection with influenza, on the other hand, increased the transepithelial conductance only late in the infection (12 to 14 hr) when virus production has already stopped. Second, viruses did affect membrane permeability. Yet, the changes observed may not be ascribed to a perturbation of the specific translocating mechanisms for Na+ and K+ which operate in the same region of the plasma membrane that the viruses use to penetrate and leave MDCK cells. The methods used in the present study are not suitable to decide whether the nonspecific changes in permeability elicited by the viruses occur over the whole cell membrane or are restricted to a given region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiton, J.F., Brown, C.D.A., Ogden, P., Simmons, N.L. 1982. K+ transport in “tight” epithelial monolayers of MDCK cells.J. Membrane Biol. 65:99–109

    Google Scholar 

  • Carrasco, L. 1978. Membrane leakiness after viral infection and a new approach to the development of antiviral agents.Nature (London) 272:694–699

    Google Scholar 

  • Carrasco, L. 1980. Selective inhibition of translation in transformed cells.FEBS Lett. 110:341–343

    PubMed  Google Scholar 

  • Carrasco, L., Smith, A. 1976. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses.Nature (London) 264:807–809

    Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Fernández-Castelo, S., Meza, I. 1981a. Fluxes, junctions and blisters in cultured monolayers of epitheloid cell (MDCK).Ann. N. Y. Acad. Sci. 372:422–441

    PubMed  Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Meza, I., Martínez-Palomo, A. 1980a. Structural and functional membrane polarity in cultured monolayers of MDCK cells.J. Membrane Biol. 52:147–159

    Google Scholar 

  • Cereijido, M., Herrera, F.C., Flanigan, W.J., Curran, P.F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47:879–893

    PubMed  Google Scholar 

  • Cereijido, M., Meza, I., Martínez-Palomo, A. 1981b. Occluding junctions in cultured epithelial monolayers.Am. J. Physiol. 240:C96-C102

    PubMed  Google Scholar 

  • Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853–880

    PubMed  Google Scholar 

  • Cereijido, M., Stefani, E., Martínez-Palomo, A. 1980b. Occluding junctions in a cultured transporting epithelium: Structural and functional heterogeneity.J. Membrane Biol. 53:19–32

    Google Scholar 

  • Damsky, C.H., Sheffield, J.B., Tuszynski, G.P., Warren, L. 1977. Is there a role for actin in virus budding.J. Cell Biol. 75:593–605

    PubMed  Google Scholar 

  • Fernández-Puentes, C., Carrasco, L. 1980. Virus infection permeabilizes mammalian cells to protein toxins.Cell 20:769–775

    PubMed  Google Scholar 

  • Field, M. 1978. Some speculations on the coupling between sodium and chloride transport processes in mammalian and teleost intestine.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 277–292. Raven, New York

    Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    PubMed  Google Scholar 

  • Fuchs, P., Giberman, E. 1973. Enhancement of potassium influx, in baby hamster kidney cells and chicken erythrocytes, during adsorption of parainfluenza 1 (Sendai) virus.FEBS Lett. 31:127–130

    PubMed  Google Scholar 

  • Genty, N., Bussereau, F. 1980. Is cytoskeleton involved in vesicular stomatitis virus reproduction?.J. Virol. 34:777–781

    PubMed  Google Scholar 

  • Giuffre, R.M., Tovell, D.R., Kay, C.M., Tyrrell, D.L. 1982. Evidence for an interaction between the membrane protein of a paramyxovirus and actin.J. Virol. 42:963–968

    PubMed  Google Scholar 

  • Hatanaka, M., Huebner, R.J., Gilden, R.V. 1969. Alterations in the characteristics of sugar uptake by mouse cells infected by murine sarcoma viruses.J. Natl. Cancer Inst. 43:1091–1096

    PubMed  Google Scholar 

  • Imprain, C.C., Foster, K.A., Micklem, K.J., Pasternak, C.A. 1980. Nature of virally mediated changes in membrane permeability to small molecules.Biochem. J. 187:847–860

    Google Scholar 

  • Isselbacher, K.J. 1972. Increased uptake of amino acids and 2-deoxy-d-glucose by virus. Transformed cells in culture.Proc. Natl. Acad. Sci. USA 69:585–589

    PubMed  Google Scholar 

  • Kalckar, H.M., Ullrey, D., Kijomoto, S., Hakomori, S. 1973. Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virusProc. Natl. Acad. Sci. USA 70:839–843

    PubMed  Google Scholar 

  • Klemperer, H.G. 1960. An effect of phloridzin on influenza virus elution and on neuraminidase activity.Virology 12:495–498

    PubMed  Google Scholar 

  • Leighton, J., Brada, Z., Estes, L., Justh, G. 1969. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney.Science 163:472–473

    PubMed  Google Scholar 

  • Madin, S.H., Darby, N.B. 1958. As catalogued in: American Type Culture Collection Catalog of Strains. H.D. Hyatt and M.J. Gent, editors. Vol. 2, pp. 574–576. Rockville, Md.

  • Martínez-Palomo, A., Meza, I., Beaty, G., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transport epithelium.J. Cell Biol. 87:736–745

    PubMed  Google Scholar 

  • Matlin, K.S., Reggio, H., Helenius, A., Simons, K. 1981. Infectious entry pathway of influenza virus in a canine kidney cell line.J. Cell Biol. 91:601–613

    PubMed  Google Scholar 

  • McRoberts, J.A., Erlinger, S., Rindler, M.J., Saier, M.H. 1982. Furosemide sensitive salt transport in the Madin-Darby canine kidney cell-line: Evidence for cotransport of Na+, K+ and Cl.J. Biol. Chem. 257:2260–2266

    PubMed  Google Scholar 

  • Meza, I., Ibarra, G., Sabanero, M., Martínez-Palomo, A., Cereijido, M. 1980. Experimental modulation of occluding junctions in a cultured transporting epithelium.J. Cell Biol. 87:746–754

    PubMed  Google Scholar 

  • Misfeldt, D.S., Hamamoto, S.T., Pitelka, D.K. 1976. Transepithelial transport in cell culture.Proc. Natl. Acad. Sci. USA 73:1212–1216

    PubMed  Google Scholar 

  • Negreanu, Y., Reinhertz, Z., Kohn, A. 1974). Effects of adsorption of u.v.-inactivated parainfluenza (Sendai) virus on the incorporation of amino acids in animal host cells.J. Gen. Virol. 22:265–270

    PubMed  Google Scholar 

  • Okada, Y., Koseki, I., Kim, J., Maeda, Y., Hashimoto, T., Kanno, Y., Matsui, Y. 1975. Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus). I. Interaction between cell membranes and virus in the early stage.Exp. Cell Res. 93:368–378

    PubMed  Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1973. Permeability changes during cell fusion.J. Membrane Biol. 14:293–303

    Google Scholar 

  • Pasternak, C.A., Micklem, J.J. 1974a. The biochemistry of virus-induced cell fusion. Changes in membrane integrity.Biochem. J. 140:405–411

    PubMed  Google Scholar 

  • Pasternak, C.A., Micklem, K.J. 1974b. Virally mediated membrane changes: Inverse effects on transport and diffusion.Biochem. J. 144:593–595

    PubMed  Google Scholar 

  • Rindler, M.J., Chuman, L.M., Shaffer, L., Saier, M.H. 1979a. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK).J. Cell Biol. 81:635–648

    PubMed  Google Scholar 

  • Rindler, M.J., McRoberts, J.A., Saier, M.H. 1982. (Na+, K+)-co-transport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+.J. Biol. Chem. 257:2254–2259

    PubMed  Google Scholar 

  • Rindler, M.J., Taub, M., Saier, M.H., Jr. 1979b. Uptake of22Na+ by cultured dog kidney cells (MDCK).J. Biol. Chem. 254:11431–11439

    PubMed  Google Scholar 

  • Rodríguez-Boulán, E. 1983. Polarized assembly of enveloped viruses from cultured epithelial cells.In: Methods in Enzymology. S. Fleischer and B. Fleischer, editors. Vol. 98. Academic, New York (in press)

    Google Scholar 

  • Rodríguez-Boulán, E., Pendergast, M. 1980. Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells.Cell 20:45–54

    PubMed  Google Scholar 

  • Rodríguez-Boulán, E., Sabatini, D.D. 1978. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity.Proc. Natl. Acad. Sci. USA 75:5071–5075

    PubMed  Google Scholar 

  • Simmons, N.L. 1981. Ion transport in “tight” epithelial monolayers of MDCK cells.J. Membrane Biol. 59:105–114

    Google Scholar 

  • Stefani, E., Cereijido, M. 1983. Electrical properties of cultured epithelioid cells (MDCK).J. Membrane Biol. 73:177–184

    Google Scholar 

  • Venuta, S., Rubin, H. 1973. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts.Proc. Natl. Acad. Sci. USA 70:653–657

    PubMed  Google Scholar 

  • Wang, E., Wolf, B.A., Lamb, R.A., Choppin, P.W., Goldbert, A.R. 1976. The presence of actin in enveloped viruses.In: Cell Motility. R. Goodman, T. Pollard and J. Rosenbaum, editors. Vol. 3, p. 589. Cold Spring Harbor Conferences on Cell Proliferation.

  • Weber, M.J. 1973. Hexose transport in normal and in Rous sarcoma virus-transformed cells.J. Biol. Chem. 218:2978–2983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Vancell, R., Beaty, G., Stefani, E. et al. Changes in paracellular and cellular ionic permeabilities of monolayers of MDCK cells infected with influenza or vesicular stomatitis viruses. J. Membrain Biol. 81, 171–180 (1984). https://doi.org/10.1007/BF01868711

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868711

Key Words

Navigation