Advertisement

The Journal of Membrane Biology

, Volume 67, Issue 1, pp 155–164 | Cite as

Turgor regulation inValonia macrophysa following acute osmotic shock

  • Sandra Guggino
  • John Gutknecht
Article

Summary

The marine algaValonia macrophysa an inhabitant of shallow subtropical waters, is subjected to sudden dilutions of external seawater during rain showers. This study describes the mechanisms involved in turgor pressure regulation following acute hyposmotic shock. Turgor regulation is 88% effective and complete within 4 hr following hyposmotic shocks of up to −10 bar. Loss of vacuolar K+, Na+ and Cl accounts for the decrease in vacuolar osmotic pressure associated with turgor regulation. A novel mechanism of turgor regulation is exhibited byValonia macrophysa given hyposmotic shocks greater than about −4 bar. Such an osmotic shock causes cell wall tension to increase above a critical value of about 6×105 dyne/cm, whereupon the protoplasm ruptures and the cell wall stretches irreversibly at a localized site. The protoplasm rupture is suggested by (1) a large abrupt increase in K+ efflux (as measured by86Rb+), (2) a rapid decrease in turgor pressure as measured with a pressure probe, and (3) sudden depolarization of the vacuole potential. Evidence for an increase in cell wall permeability includes efflux from the vacuole of dextran (mol wt 70,000), which normally has a very low cell wall permeability, and scanning electron micrographs which show a trabeculated scar area in the cell wall. This mechanism of turgor regulation is physiologically important because 98% of the cells regained normal growth rate and turgor following acute osmotic shock.

Key words

Osmoregulation turgor regulation ion transport marine algae Valonia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, A.L., Barnes, S.N., Anderson, K.L. 1969. A fixation technique for electron microscopy which provides uniformly good preservation of the tissues of a variety of marine invertebrates.Biol. Bull. 137:393Google Scholar
  2. Carpita, N., Sabularse, D., Montezinos, D., Delmer, D.P. 1979. Determination of the pore size of cell walls of living plant cells.Science 205:1144–1147Google Scholar
  3. Cram, W.J., 1976. Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply.In: Encyclopedia of Plant Physiology, New Series. U. Luttge and M.G. Pitman, editors, Vol. 2A, pp. 284–316. Springer-Verlag, New YorkGoogle Scholar
  4. Dainty, J. 1963. Water relations of plant cells.Adv. Bot. Res. 1:279–326Google Scholar
  5. Davis, R.F. 1981. Electrical properties of the plasmalemma and tonoplast inValonia ventricosa.Plant Physiol. 67:825–831Google Scholar
  6. Epstein, W., Schultz, S.G. 1965. Cation transport inEscherichia coli. V. Regulation of cation content.J. Gen. Physiol. 49:221–234Google Scholar
  7. Guggino, S., Gutknecht, J. 1980. Turgor regulation inValonia macrophysa after acute osmotic shock.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas and J. Dainty, editors. pp. 495–496. Elsevier/North Holland, New YorkGoogle Scholar
  8. Gutknecht, J. 1966. Sodium, potassium and chloride transport and membrane potentials inValonia ventricosa.Biol. Bull. 130:331–344Google Scholar
  9. Gutknecht, J. 1967. Ion fluxes and short-circuit current in internally perfused cells ofValonia ventricosa.J. Gen. Physiol. 50:1821–1834PubMedGoogle Scholar
  10. Gutknecht J. 1968. Salt transport inValonia: Inhibition of potassium uptake by small hydrostatic pressures.Science 160:68–70PubMedGoogle Scholar
  11. Gutknecht, J., Hastings, D.F., Bisson, M.A. 1978. Ion transport and turgor pressure regulation in giant algal cells.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors, Vol. III, pp. 125–174. Springer-Verlag, New YorkGoogle Scholar
  12. Hastings, D.F. 1975. Turgor pressure regulation by the giant celled algaValonia macrophysa. Ph.D. Dissertation. University Microfilms, Ann Arbor, MichiganGoogle Scholar
  13. Hastings, D.F., Gutknecht, J. 1974. Turgor pressure regulation: Modulation of active potassium transport by hydrostatic pressure gradients.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. pp. 79–83. Springer-Verlag, New YorkGoogle Scholar
  14. Hastings, D.F., Gutknecht, J. 1976. Ionic relations and the regulation of turgor pressure in the marine alga.Valonia macrophysa.J. Membrane Biol. 28:263–275Google Scholar
  15. Hellebust, J. 1976. Osmoregulation.Annu. Rev. Plant Physiol. 27:485–505Google Scholar
  16. Kauss, H. 1979. Osmoregulation in algae.In: Progress in Phytochemistry. L. Reinhold, J.B. Harborne and T. Swain, editors, Vol. 5, pp. 1–27. Pergamon Press, OxfordGoogle Scholar
  17. Kirst, G.O., Bisson, M.A. 1979. Regulation of turgor pressure in marine algae: Ions and low molecular weight organic compounds.Aust. J. Plant Physiol. 6:539–556Google Scholar
  18. Luttge, U., Higinbotham, N. 1979. Transport in Plants. p. 153. Springer-Verlag, New YorkGoogle Scholar
  19. Rhoads, D.B., Epstein, W. 1978. Cation transport inEscherichia coli. IX. Regulation of K transport.J. Gen. Physiol. 72:283–295PubMedGoogle Scholar
  20. Rhoads, D.B., Woo, A., Epstein, W. 1977. Discrimination between86Rb+ and K+ byEscherichia coli.Biochim. Biophys. Acta 469:45–51PubMedGoogle Scholar
  21. Seeman, P. 1967. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membranes after lysis by saponin and lysolecithin.J. Cell Biol 32:55–70PubMedGoogle Scholar
  22. Steudle, E., Zimmermann, U. 1971. Hydraulic conductivity ofValonia utricularis.Z. Naturforsch. 26b:1302–1311Google Scholar
  23. Steudle, E., Zimmermann, U., Lelkes, P.I. 1977. Volume and pressure effects on the potassium fluxes ofValonia utricularis.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty and J. Dainty, editors. pp. 123–132. Publications de l'Universite de Rouen, ParisGoogle Scholar
  24. Tepfer, M., Cleland, R.E. 1979. A comparison of acid-induced cell wall loosening inValonia ventricosa and in oat coleoptiles.Plant Physiol. 63:898–902Google Scholar
  25. Tsapis, A., Kepes, A. 1977. Transient breakdown of the permeability barrier of the membrane ofEscherichia coli upon hyposmotic shock.Biochim. Biophys. Acta 469:1–12PubMedGoogle Scholar
  26. Zadunaisky, J.A., Degnan, K.J. 1976. Passage of sugars and urea across the isolated retina pigment epithelium of the frog.Exp. Eye Res. 23:191–196PubMedGoogle Scholar
  27. Zimmermann, U. 1977. Cell turgor pressure regulation and turgor-pressure-mediated transport processes.In: Integration of Activity in the Higher Plant. D.H. Jennings, editor. pp. 117–154. Cambridge University Press, CambridgeGoogle Scholar
  28. Zimmermann, U. 1978. Physics of turgor and osmoregulation.Annu. Rev. Plant Physiol. 29:121–148Google Scholar
  29. Zimmermann, U., Steudle, E. 1974. The pressure dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis.J. Membrane Biol. 16:331–352Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Sandra Guggino
    • 1
    • 2
  • John Gutknecht
    • 1
    • 2
  1. 1.Department of PhysiologyDuke University Medical CenterDurham
  2. 2.Duke University Marine LaboratoryBeaufort

Personalised recommendations