The Journal of Membrane Biology

, Volume 67, Issue 1, pp 103–111 | Cite as

Study of maturation of membrane transport function in red blood cells by X-ray microanalysis

  • Ping Lee
  • R. Gary Kirk
Article

Summary

Red blood cells of certain species of animals, such as dogs and cats, contain low potassium and high sodium, whereas the erythropoietic stem cells giving rise to these cells are of high potassium type. This paper examines the sequence of membrane transport changes during erythropoiesis by analyzing the K, Na and Fe in single bone marrow cells, reticulocytes and mature red blood cells with X-ray microanalysis. The relationship between K/Na ratios and Fe/(K+Na) ratios were examined by X-ray microanalysis. The K/Na ratios give a measure of the membrane cation transport function. The Fe/(K+Na), which is analogous to hemoglobin concentration, gives an index of maturation stage. The relationships between K/Na and Fe/(K+Na) in the marrow cells of normal adult dog and those of a phenylhydrazine-injected dog with accelerated erythropoiesis show that the modification of cation composition occurs after the initiation of hemoglobin synthesis but before its completion. Similar relationships in the reticulocytes obtained from phenylhydrazine-injected dogs as well as from newborn dogs show a consistent decrease in K/Na with increased Hb, indicating a drastic change in cation composition during the maturation of the reticulocytes. Therefore the modification in membrane transport function must have occurred before or during the formation of reticulocytes.

Key words

X-ray microanalysis electron probe maturation transport red blood cells erythropoiesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessis, Marcel. 1973. Living Blood Cells and Their Ultra-structure (Translated by R.I. Weed). Springer-Verlag, New York, Heidelberg, BerlinGoogle Scholar
  2. Blunt, M.H., Evans, J.V. 1965. Effect of experimental anemias on cation concentrations of the erythrocytes of sheep.Am. J. Physiol. 209:978–985PubMedGoogle Scholar
  3. Bunn, H.F. 1972. Erythrocyte destruction and hemoglobin catabolism.Seminars Hematol. 9(1):3–17Google Scholar
  4. Evans, J.V., Blunt, M.H. 1960. Electrolyte and haematocrit changes in the blood of sheep from foetal to postnatal life.Aust. J. Biol. Sci. 14:87–99Google Scholar
  5. Funder, J., Wieth, J.O. 1966. Potassium, sodium, and water in normal human red blood cells.Scand. J. Clin. Lab. Invest. 18:167–180PubMedGoogle Scholar
  6. Ganzoni, A.M. 1969. Iron uptake and heme synthesis in rat reticulocytes.Helv. Med. Acta 34:416–427PubMedGoogle Scholar
  7. Ganzoni, A., Hillman, R.S., Finch, C.A. 1969. Maturation of the macroreticulocyte.Br. J. Haematol 16:119–135PubMedGoogle Scholar
  8. Henriques, V., Orskov, S.L. 1936. Untersuchungen über die Schwankungen des Kationengehaltes den roten Blutkörperchen. I. Die Änderung der Kaliumkonzentration in den Blutkörperchen nach einem Aderlass, nach Vergiftung mit Phenylhydrazin und nach Einführung von destilliertem Wasser in die Blutbahn.Skand. Arch. Physiol. 74:(1, 2, 3) 63–77Google Scholar
  9. Kim, H.D., Theg, B.E., Lauf, P.K. 1980. LK sheep reticulocytosis. Effect of anti-L on K influx and in-vitro maturation.J. Gen. Physiol. 76:109–121PubMedGoogle Scholar
  10. Kirk, R.G., Lee, P., Duplinsky, T.G., Tosteson, D.C. 1979. X-ray microanalysis of red blood cells.In: Biological X-Ray Microanalysis. C. Lechene and R. Warner, editor. pp. 299–316, Academic Press, New YorkGoogle Scholar
  11. Kirk, R.G., Lee, P., Tosteson, D.C. 1978. Electron probe microanalysis of red blood cells. II. Cation changes during maturation.Am. J. Physiol.: Cell Physiol. 4(3):C251-C255Google Scholar
  12. Lee, P., Woo, A., Tosteson, D.C. 1966. Cytodifferentiation and membrane transport properties in LK sheep red cells.J. Gen. Physiol. 50:379–390PubMedGoogle Scholar
  13. Miles, P.R., Lee, P. 1972. Sodium and potassium content and membrane transport properties in red blood cells from newborn puppies.J. Cell. Physiol. 79:367–376PubMedGoogle Scholar
  14. Noyes, W.D., Hosain, F., Finch, C.A. 1964. Incorporation of radioiron into marrow heme.J. Lab. Clin. Med. 64:574–580PubMedGoogle Scholar
  15. Orringer, E.P., Parker, J.C. 1977. Selective increase of potassium permeability in red blood cells exposed to acetylphenylhydrazine.Blood 50(6):1013–1021PubMedGoogle Scholar
  16. Parker, J.C. 1972. Volume regulation in dog red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes-Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Williams, editors. pp. 109–111. George Thieme Publishers, StuttgartGoogle Scholar
  17. Parker, J.C. 1973. Dog red blood cells, adjustment of densityin vivo.J. Gen. Physiol. 61:146–157PubMedGoogle Scholar
  18. Tosteson, D.C., Hoffman, J.F. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. Gen. Physiol. 44:169–196PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Ping Lee
    • 1
    • 2
  • R. Gary Kirk
    • 1
    • 2
  1. 1.Department of PhysiologyWest Virginia University Medical CenterMorgantown
  2. 2.Department of PhysiologyYale UniversityNew Haven

Personalised recommendations