The Journal of Membrane Biology

, Volume 67, Issue 1, pp 63–71 | Cite as

Small signal impedance of heart cell membranes

  • David E. Clapham
  • Louis J. DeFelice
Article

Summary

The electrical impedance of seven-day ventricular embryonic chick heart cell membranes maintained in tissue culture was measured under voltage clamp using the two-microelectrode voltage-clamp technique. Small sinusoidal perturbations were added to the voltage-clamp potential and the amplitude and phase of the steady-state sinusoidal response in current was recorded as a function of mean clamp potential or perturbing frequency. The experimental results are compared with two models of excitability for heart: the MNT model (McAllister, Noble & Tsien,J. Physiol. (London)251:1–59, (1975) and the BR model (Beeler & Reuter,J. Physiol. (London)268:177–210, 1977). The small signal impedance of heart cell membranes, in theory and experiment, shows a resonance near 1 Hz and near the threshold potential. The effect of this resonance is to increase the effective length constant of the membrane for these conditions.

Key words

embryonic heart cells impedance voltage clamp beat rate propagation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeler, G.W., Reuter, H. 1977. Reconstruction of the action potential of ventricular myocardial fibres.J. Physiol. (London) 268:177–210Google Scholar
  2. Bromm, B. 1975. Spike frequency of the nodal membrane generated by high frequency alternating current.Pfluegers Arch. 353:1–19Google Scholar
  3. Chandler, W.K., Fitzhugh, R., Cole, K.S. 1962. Theoretical stability properties of a space clamped axon.Biophys. J. 2:105–127PubMedGoogle Scholar
  4. Clapham, D.E. 1979. A Whole Tissue Model of the Heart Cell Aggregate; Electrical Coupling Between Cells, Membrane Impedance and the Extracellular Space. Doctoral Dissertation, Emory University, Atlanta, GeorgiaGoogle Scholar
  5. Clapham, D.E., DeFelice, L.J. 1976. The theoretical small signal impedance of the frog nodeRana pipiens.Pfluegers Arch. 366:273–276Google Scholar
  6. Clapham, D.E., Shrier, A., DeHaan, R.L. 1980. Junctional resistance and action potential delay between embryonic heart cell aggregates.J. Gen. Physiol. 75:633–654PubMedGoogle Scholar
  7. Clay, J.R., DeFelice, L.J., DeHaan, R.L. 1979. Current noise parameters derived from voltage noise and impedance in embryonic heart cell preparations.Biophys. J. 28:169–184PubMedGoogle Scholar
  8. Clay, J.R., Shrier, A. 1981. Analysis of subthreshold pacemaker currents in chick embryonic heart cells.J. Physiol. (London) 312:471–490Google Scholar
  9. Cole, K.S., Baker, R.F. 1941. Transverse impedance of the squid giant axon during current flow.J. Gen. Physiol. 24:535–549Google Scholar
  10. Deck, K.A., Kerr, R., Trautwein, W. 1964. Voltage clamp technique in mammalian cardiac fibres.Pfluegers Arch. Gesamte Physiol. 280:50–62Google Scholar
  11. DeFelice, L.J. 1981. Introduction to Membrane Noise. Plenum Press, New York (See Chapter 6 and Figs. 87.1 through 87.4, in particular.)Google Scholar
  12. DeHaan, R.L., DeFelice, L.J. 1978. Oscillatory properties and excitability of the heart cell membrane.Theor. Chem. 4:181–233Google Scholar
  13. Detwiler, P.B., Hodgkin, A.L., McNaughton, P.A. 1978. A surprising property of electrical spread in the network of rods in the turtle's retina.Nature (London) 274:562–565Google Scholar
  14. Dodge, F.A. 1963. A Study of Ionic Permeability Changes Underlying Excitation in Myelinated Nerve Fibres of the Frog. Ph.D. Thesis, The Rockefeller University, New York N.Y. (Univ. Microfilms, Ann Arbor, Michigan, No. 63-7333)Google Scholar
  15. Eisenberg, R.S., Barcilon, V., Mathias, R.T. 1979. Electrical properties of spherical syncytia.Biophys. J. 30:151–180Google Scholar
  16. Hecht, H.H., Hutter, O.F., Lywood, D.W. 1964. Voltage-current relation of short Purkinje fibres in sodium deficient solution.J. Physiol. (London) 170:5P-7PGoogle Scholar
  17. Hille, B. 1967. A Pharmacological Analysis of the Ionic Channels of Nerve. Ph.D. Thesis, The Rockefeller University, New York, N.Y. (Univ. Microfilms, Ann Arbor, Michigan, No. 68-9584)Google Scholar
  18. Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500–544Google Scholar
  19. Mauro, A., Conti, F., Dodge, F., Schor, R. 1970. Subthreshold behavior and phenomenological impedance of the squid giant axon.J. Gen. Physiol. 55:497–523PubMedGoogle Scholar
  20. McAllister, R.E., Noble, D., Tsien, R.W. 1975. Reconstruction of the electrical activity of cardiac Purkinje fibers.J. Physiol. (London) 251:1–59Google Scholar
  21. Nathan, R.D., DeHaan, R.L. 1979. Voltage clamp analysis of embryonic heart cell aggregates.J. Gen. Physiol. 73:175–198PubMedGoogle Scholar
  22. Noble, D. 1962. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials.J. Physiol. (London) 160:317–352Google Scholar
  23. Sachs, H.G., DeHaan, R.L. 1973. Embryonic myocardial cell aggregates: Volume and pulsation rate.Dev. Biol. 30:233–240PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • David E. Clapham
    • 1
  • Louis J. DeFelice
    • 1
  1. 1.Department of AnatomyEmory University School of MedicineAtlanta

Personalised recommendations