The Journal of Membrane Biology

, Volume 120, Issue 1, pp 83–94 | Cite as

Vasopressin alters the mechanism of apical Cl entry from Na+:Cl to Na+:K+:2Cl cotransport in mouse medullary thick ascending limb

  • Adam Sun
  • Eric B. Grossman
  • Michael Lombardi
  • Steven C. Hebert


Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.

Key Words

epithelial transport Na−K−2Cl cotransport vasopressin Na−Cl transport medullary thick ascending limb Rb transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvo, M., Calamia, J., Eveloff, J.L. 1985. Lack of potassium effect on Na−Cl cotransport in the medullary thick ascending limb.Am. J. Physiol. 249:F34-F39PubMedGoogle Scholar
  2. 2.
    Amsler, K., Donahue, J.J., Slayman, C.W., Adelberg, E.A. 1985. Stimulation of bumetanide-sensitive K+ transport in Swiss 2T3 fibroblasts by serum and mitogenic hormones.J. Cell. Physiol. 123:257–263PubMedGoogle Scholar
  3. 3.
    Brezis, M., Rosen, S., Silva P., Epstein, F.H. 1984. Renal ischemia: A new perspective.Kidney Int. 26:375–383PubMedGoogle Scholar
  4. 4.
    Brock, T.A., Brugnara, C., Canessa, M., Gimbrone, M.A., Jr. 1986. Bradykinin and vasopressin stimulate Na+−K+−Cl cotransport in cultured endothelial cells.Am. J. Physiol. 250:C888-C895PubMedGoogle Scholar
  5. 5.
    Eveloff, J., Calamia, J. 1986. Effect of hyperosmolality and phorbol esters on cation fluxes in medullary thick ascending limb cells (mTALH).Kidney Int. 29:395 (Abstr.)Google Scholar
  6. 6.
    Eveloff, J., Hasse, W., Kinne, R. 1980. Separation of renal medullary cells: Isolation of cells from the thick ascending limb of Henle's loop.J. Cell Biol 87:672–681PubMedGoogle Scholar
  7. 7.
    Eveloff, J.L., Calamia, J. 1986. Effect of osmolarity on cation fluxes in medullary thick ascending limb cells.Am. J. Physiol. 250:F176-F180PubMedGoogle Scholar
  8. 8.
    Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10PubMedGoogle Scholar
  9. 9.
    Feit, P.W., Hoffmann, E.K., Schiodt, M., Kristensen, P., Jessen, F., Dunham, P.B. 1988. Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column.J. Membrane Biol. 03:135–147Google Scholar
  10. 10.
    Forbush, B., III, Palfrey, H.C. 1983. [3H]Bumetanide binding to membranes isolated from dog kidney outer medulla. Relationship to the Na,K,Cl co-transport system.J. Biol. Chem. 258:11787–11792PubMedGoogle Scholar
  11. 11.
    Friedman, P.A. 1982. Bumetanide inhibition of [CO2+HCO3]-dependent and independent equivalent electrical flux in renal cortical thick ascending limbs.J. Pharmacol. Exp. Ther. 238:407–414Google Scholar
  12. 12.
    Friedman, P.A., Andreoli, T.E. 1982. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na/H+ and Cl/HCO3 exchange in apical plasma membranes.J. Gen. Physiol. 80:683–711PubMedGoogle Scholar
  13. 13.
    Geck, P., Heinz, E. 1986. The Na−K−2Cl cotransport system.J. Membrane Biol. 91:97–105Google Scholar
  14. 14.
    Greger, R. 1981. Coupled transport of Na+ and Cl in the thick ascending limb of Henle's loop of rabbit nephrons.Scand. J. Audiol. Suppl. 14:1–15Google Scholar
  15. 15.
    Greger, R., Schlatter, E. 1981. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 392:92–94Google Scholar
  16. 16.
    Greger, R., Velazquez, H. 1987. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism.Kidney Int. 31:590–596PubMedGoogle Scholar
  17. 17.
    Grossman, E.B., Lombardi, M.J., Hebert, S.C. 1989. ADH enhances NaCl absorption in mouse medullary thick ascending limbs (MTAL) without increasing O2 consumption (QO2).Kidney Int. 35:480 (Abstr.)Google Scholar
  18. 18.
    Guggino, W.B., Oberleithner, H., Giebisch, G. 1988. The amphibian diluting segment.Am. J. Physiol 254:F615-F627PubMedGoogle Scholar
  19. 19.
    Haas, M., Forbush, B., III 1987. Photolabeling of a 150-kDa (Na+K+Cl) cotransport protein from dog kidney with a bumetanide analogue.Am. J. Physiol. 253:C243-C250PubMedGoogle Scholar
  20. 20.
    Haas, M., Forbush, B., III. 1987. Na,K,Cl-cotransport system: Characterization by bumetanide binding and photolabelling.Kidney Int. 32:S134-S140Google Scholar
  21. 21.
    Haas, M., Forbush, B., III 1990. Two [3H]bumetanide binding sites on mouse kidney membranes: Identification of corresponding proteins by photoaffinity labelling.Biophys. J. 57:84a (Abstr)Google Scholar
  22. 22.
    Hebert, S.C. 1986. Hypertonic cell volume regulation in mouse thick limbs: II. Na−H and Cl−HCO3 exchange in basolateral membranes.Am. J. Physiol. 250:C920-C931PubMedGoogle Scholar
  23. 24.
    Hebert, S.C., Andreoli, T.E. 1984. Control of NaCl transport in the thick ascending limb.Am. J. Physiol. 246:F745-F756PubMedGoogle Scholar
  24. 25.
    Hebert, S.C., Andreoli, T.E. 1986. Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl absorption.J. Gen. Physiol. 87:567–590PubMedGoogle Scholar
  25. 26.
    Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs: II. ADH enhancement of transcellular NaCl cotransport; origin of the transepithelial voltage.Am. J. Physiol. 241:F432-F442PubMedGoogle Scholar
  26. 27.
    Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport.Am. J. Physiol. 241:F412-F431PubMedGoogle Scholar
  27. 28.
    Hebert, S.C., Friedman, P.A., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductive pathways.J. Membrane Biol. 80:201–219Google Scholar
  28. 29.
    Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells.Physiol. Rev. 69:315–382PubMedGoogle Scholar
  29. 30.
    Hoffmann, E.K., Sjoholm, C., Simonsen, L.O., 1983. Na,Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280CrossRefGoogle Scholar
  30. 31.
    Hughes, P.M., A.D.C. Macknight, 1976. The regulation of cellular volume in renal cortical slices incubated in hyposmotic medium.J. Physiol. 257:137–154PubMedGoogle Scholar
  31. 32.
    Ikehara, T., Yamaguchi, H., Hosokawa, K., Miyamoto, H. 1990. Kinetic mechanism of ATP action in Na+−K+Cl cotransport of HeLa cells determined by Rb+ influx studies.Am. J. Physiol. 258:C599-C609PubMedGoogle Scholar
  32. 33.
    Kikeri, D., Azar, S., Sun, A., Zeidel, M.L., Hebert, S.C. 1990. Na+−H+ antiporter and Na+−(HCO3)n symporter regulate antracellular pH in mouse medullary thick limbs of Henle.Am. J. Physiol. 258:F445-F456PubMedGoogle Scholar
  33. 34.
    Kikeri, D., Sun, A., Zeidel, M.L., Hebert, S.C. 1989. Cell membranes impermeable to NH3.Nature 339:478–480PubMedGoogle Scholar
  34. 35.
    Kirk, K.L., Dibona, D.R., Schafer, J.A. 1984. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: Quantitative examination with differential interference contrast microscopy.J. Membrane Biol. 79:53–64Google Scholar
  35. 36.
    Knepper, M.A., Packer, R., Good, D.W. 1989. Ammonium transport in the kidney.Physiol. Rev. 69:179–249PubMedGoogle Scholar
  36. 37.
    Koenig, B., Ricapito, S., Kinne, R. 1983. Chloride transport in the thick ascending limb of Henle's loop: Potassium dependence and stoichiometry of the NaCl cotransport system in plasma membrane vesicles.Pfluegers Arch. 399:173–179Google Scholar
  37. 38.
    Mandel, L.J. 1986. Primary active sodium transport, oxygen consumption, and ATP: Coupling and regulation,Kidney Int. 29:3–9PubMedGoogle Scholar
  38. 39.
    Molony, D.A., Andreoli, T.E. 1988. Diluting power of thick limbs of Henle: 1. Peritubular hypertonicity blocks basolateral Cl channels.Am. J. Physiol. 255:F1128-F1137PubMedGoogle Scholar
  39. 40.
    Molony, D.A., Reeves, W.B., Hebert, S.C., Andreoli, T.E. 1987. ADH increases apical Na,K,2Cl entry in mouse medullary thick ascending limbs of Henle.Am. J. Physiol. 252:F177-F187PubMedGoogle Scholar
  40. 41.
    Morel, F. 1981. Sites of hormone action in the mammalian nephron.Am. J. Physiol. 240:F159-F164PubMedGoogle Scholar
  41. 42.
    Musch, M.W., Orellana, S.A., Kimberg, L.S., Field, M., Halm, D.R., Krasny, E.J., Frizzell, R.A. 1982. Na+−K+−Cl co-transport in the intestine of a marine teleost.Nature 300:351–353PubMedGoogle Scholar
  42. 43.
    O-Grady, S.M., Palfrey, H.C., Field, M. 1987. Characteristics and functions of Na−K−Cl cotransport in epithelial tissues.Am. J. Physiol. 253:C177-C192PubMedGoogle Scholar
  43. 44.
    Reuss, L. 1989. Ion transport across gallbladder epithelium.Physiol. Rev. 69:503–545PubMedGoogle Scholar
  44. 45.
    Silva, P., Stoff, J.S., Solomon, R.J., Rosa, R., Stevens, A., Epstein, F.H. 1980. Oxygen cost of chloride transport in perfused rectal gland ofSqualus acanthias.J. Membrane Biol. 53:215–221Google Scholar
  45. 46.
    Stokes, J.B. 1984. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system.J. Clin. Invest. 74:7–16PubMedGoogle Scholar
  46. 47.
    Sun, A.M., Hebert, S.C. 1989. ADH alters the K+ requirement for the luminal, furosemide-sensitive NaCl symporter in mouse medullary thick limbs (MTAL).Kidney Int. 35:489 (Abstr.)Google Scholar
  47. 48.
    Uchida, S., Endou, H. 1988. Substrate specificity to maintain cellular ATP along the mouse nephron.Am. J. Physiol. 255:F977-F983PubMedGoogle Scholar
  48. 49.
    Warnock, D.G., Eveloff, J.L. 1982. NaCl entry mechanisms in the luminal membrane of the renal tubule.Am. J. Physiol. 242:F561-F574PubMedGoogle Scholar
  49. 50.
    Welsh, M.J. 1984. Energetics of chloride secretion in canine tracheal epithelium: Comparison of the metabolic cost of chloride transport with the metabolic cost of sodium transport.J. Clin. Invest. 74:262–268PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Adam Sun
    • 1
    • 2
  • Eric B. Grossman
    • 1
    • 2
  • Michael Lombardi
    • 1
    • 2
  • Steven C. Hebert
    • 1
    • 2
  1. 1.Renal Division, Department of Medicine, Laboratory of Molecular Physiology and BiophysicsBrigham and Women's HospitalBoston
  2. 2.The Harvard Center for the Study of Kidney DiseasesHarvard Medical SchoolBoston

Personalised recommendations