Skip to main content

Mitochondrial uncoupling agents

Effects on membrane permeability of molluscan neurons

Summary

Agents which uncouple oxidative phosphorylation in mitochondria were applied to identified neurons in an isolated ganglion of the marine molluscNavanax inermis. Aromatic monocarboxylic acids, acetanilides, benzamides, benzaldehydes and phenols all caused a rapid, reversible, dose-dependent increase in the membrane potential and conductance of the neurons tested. These events were due primarily to an increase in the membrane's conductance to potassium, relative to chloride. All active compounds also produced a reversible, dose-dependent decrease in the permeability of alkali-cations relative to potassium. The relative activity of congeners in each group of substances was directly correlated with the octanol-water partition coefficients of the various compounds, indicating that hydrophobicity was important in determining drug effect and suggesting that steric requirements were minimal. The results suggest that the observed changes in membrane electrical properties and cation selectivity are due to an increase in the membrane's anionic field strength caused by the hydrophobic interaction of anionic and nonionic agents with the neuronal membrane.

This is a preview of subscription content, access via your institution.

References

  • Barker, J.L., Levitan, H. 1971. Salicylate: Effects on membrane permeability of molluscan neurons.Science 172:1245

    PubMed  Google Scholar 

  • Barker, J.L., Levitan, H. 1974. Phenols: Effects on invertebrate membrane permeability related to uncoupling activity in mitochondria.Brain Res. 67:555

    PubMed  Google Scholar 

  • Barker, J.L., Levitan, H. 1975. Acetanilides: Effects on invertebrate neurons correlated with analgesic activity in vertebrates.J. Pharmacol. Exp. Ther. 193:892

    PubMed  Google Scholar 

  • Bryant, S.H., Morales-Aguilera, O. 1971. Chloride conductance in normal and mytonic muscle fibres and the action of monocarboxylic aromatic acids.J. Physiol. (Lond.) 219:367

    Google Scholar 

  • Caswell, A.H. 1969. Proton permeability and the regulation of potassium permeability in mitochondria by uncoupling agents.J. Membrane Biol. 1:53

    Google Scholar 

  • Diamond, J.M., Wright, E.M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581

    PubMed  Google Scholar 

  • Eisenman, G. 1961. On the elementary atomic origin of equilibrium ion specificity.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and K.A. Kotyk, editors. p. 163. Academic Press, New York

    Google Scholar 

  • Eisenman, G. 1963. The influence of Na, K, Li, Rb, and Cs on cellular potentials and related phenomena.Bol. Inst. Estud. Med. Bio. (Univ. Nac. Auton. Mex.) 21:155

    Google Scholar 

  • Eisenman, G. Some elementary factors involved in specific ion permeation.Proc. 23rd Int. Cong. Physiol. Sci. (Tokyo), p. 489

  • Fujita, T. 1966. The analysis of physiological activity of substituted phenols with substituent constants.J. Med. Chem. 9:797

    PubMed  Google Scholar 

  • Fujita, T., Iwasa, J., Hansch, C. 1964. A new substituent, constant, π, derived from partition coefficients.J. Amer. Chem. Soc. 86:5175

    Google Scholar 

  • Godfraind, J.M., Kawamura, H., Krnjević, K., Pumain, R. 1971. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones.J. Physiol. (London) 215:199

    Google Scholar 

  • Gorman, A.L.F., McReynolds, J.S. 1974. COntrol of membrane K+ permeability in a hyperpolarizing photoreceptor: Similar effects of light and metabolic inhibitors.Science 185:620

    PubMed  Google Scholar 

  • Haas, H.G., Kern, R., Einwächter, H.M. 1970. Electrical activity and metabolism in cardiac tissue: An experimental and theoretical study.J. Membrane Biol. 3:180

    Google Scholar 

  • Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanism of anion and cation permeations in the resting membrane of a barnacle muscle fiber.J. Gen. Physiol. 57:408

    PubMed  Google Scholar 

  • Hansch, C. 1971. Quantitative structure-activity relationships in drug design.In: Drug Design. E.J. Ariens, editor. Vol. 1, p. 271. Academic Press, New York

    Google Scholar 

  • Hansch, C. 1975. Biosterism. Intra-Science Chem. Reports (in press)

  • Hansch, C., Anderson, S. 1967 The effect of intramolecular hydrophobic bonding on partition coefficients.J. Org. Chem. 32:2583

    Google Scholar 

  • Hansch, C., Glave, W.R. 1971. Structure-activity relationships in membrane-perturbing agents.Mol. Pharmacol. 7:337

    PubMed  Google Scholar 

  • Hansch, C., Helmer, F. 1968. Extrathermodynamic approach to the study of the adsorption of organic compounds by macromolecules.J. Polymer Sci.: Part A-1 6:3295

    Google Scholar 

  • Hansch, G., Kiehs, K., Lawrence, G.L. 1965. The role of substituents in the hydrophobic bonding of phenols by serum and mitochondrial proteins.J. Amer. Chem. Soc. 87:5570

    Google Scholar 

  • Hansch, C., Kim, K.H., Sarma, R.H. 1973. Structure-activity relationship in benzamides inhibiting alcohol dehydrogenase.J. Amer. Chem. Soc. 95:6447

    Google Scholar 

  • Hansch, C., Leo, A., Unger, S.H., Kim, K.H., Nikaitani, D., Lien, E.J. 1973. “Aromatic” substituent constants for structure-activity correlations.J. Med. Chem. 16:1207

    PubMed  Google Scholar 

  • Hicklin, J.A. 1959. Salicylate and potassium fluxes of rat diaphragm.Nature 184:2029

    PubMed  Google Scholar 

  • Jaffé, H.H. 1953. A re-examination of the Hammett equation.Chem. Rev. 53:191

    Google Scholar 

  • Lehninger, A.L., Carafoli, E., Rossi, C.S. 1967. Energy-linked ion movements in mitochondrial systems.Adv. Enzymol. 29:259

    PubMed  Google Scholar 

  • Leo, A., Hansch, C., Elkins, D. 1971. Partition coefficients and their uses.Chem. Rev. 71:525

    Google Scholar 

  • Levitan, H., Barker, J.L. 1972a. Salicylate: A structure-activity study of its effects on membrane permeability.Science 176:1423

    PubMed  Google Scholar 

  • Levitan, H., Barker, J.L. 1972b. Membrane permeability: Cation selectivity reversibly altered by salicylate.Science 178:63

    PubMed  Google Scholar 

  • Levitan, H., Tauc, L., Segundo, J.P. 1970. Electrical transmission among neurons in the buccal ganglion of a mollusc,Navanax inermis.J. Gen. Physiol. 55:484

    PubMed  Google Scholar 

  • Machleidt, H., Roth, S., Seeman, P. 1972. The hydrophobic expansion of erythrocyte membranes by the phenol anesthetics.Biochim. Biophys. Acta 255:178

    PubMed  Google Scholar 

  • Manchester, K.L., Randle, P.J., Smith, G.H. 1958. Some effects of sodium salicylate on muscle metabolism.Brit. Med. J. 1:1028

    Google Scholar 

  • McDonald, T.F., Macleod, D.P. 1972. The effect of 2,4-dinitrophenol on electrical and mechanical activity, metabolism and ion movements in guinea-pig ventricular muscle.Brit. J. Pharmacol. 44:711

    Google Scholar 

  • McLaughlin, S.G.A. 1972. The mechanism of action of DNP on phospholipid bilayer membranes.J. Membrane Biol. 9:361

    Google Scholar 

  • McLaughlin, S.G.A. 1973. Salicylates and phospholipid bilayer membranes.Nature 243:234

    PubMed  Google Scholar 

  • Meech, R.W. 1972. Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells.Comp. Biochem. Physiol. 42 A:493

    Google Scholar 

  • Meech, R.W. 1974a. Prolonged action potentials inAplysia neurones injected with EGTA.Comp. Biochem. Physiol. 48 A:397

    Google Scholar 

  • Meech, R.W. 1974b. The sensitivity ofHelix aspersa neurones to injected calcium ions.J. Physiol. (London) 237:259

    Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:445

    PubMed  Google Scholar 

  • Mitchell, P., Moyle, J. 1967. Acid-base titration across the membrane system of rat-liver mitochondria.Biochem. J. 104:588

    PubMed  Google Scholar 

  • Mitchell, P., Moyle, J. 1969. Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria.Europ. J. Biochem. 7:471

    PubMed  Google Scholar 

  • Omachi, A. 1964. Sulfate transport in human red cells: Inhibition by some uncouplers of oxidative phosphorylation.Science 145:1449

    PubMed  Google Scholar 

  • Strickholm, A., Wallin, B.G. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.J. Gen. Physiol. 50:1929

    PubMed  Google Scholar 

  • Vasington, F.D., Murphy, J.V. 1962. Ca++ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation.J. Biol. Chem. 237:2670

    PubMed  Google Scholar 

  • Weast, R.C. (editor). 1971. Handbook of Chemistry and Physics. Chemical Rubber Co., Cleveland, Ohio

    Google Scholar 

  • Webb, J.L., Hollander, P.B. 1956. Metabolic aspects of the relationship between the contractility and membrane potential of the rat atrium.Circ. Res. 4:618

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barker, J.L., Levitan, H. Mitochondrial uncoupling agents. J. Membrain Biol. 25, 361–380 (1975). https://doi.org/10.1007/BF01868584

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868584

Keywords

  • Partition Coefficient
  • Benzaldehyde
  • Oxidative Phosphorylation
  • Benzamides
  • Neuronal Membrane