Skip to main content
Log in

ATP synthesis driven by a protonmotive force inStreptococcus lactis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

An electrochemical potential difference for hydrogen ions (a protonmotive force) was artificially imposed across the membrane of the anaerobic bacteriumStreptococcus lactis. When cells were exposed to the ionophore, valinomycin, the electrical gradient was established by a potassium diffusion potential. A chemical gradient of protons was established by manipulating the transmembrane pH gradient. When the protonmotive force attained a value of 215 mV or greater, net ATP synthesis was catalyzed by the membrane-bound Ca++, Mg++-stimulated ATPase. This was true whether the protonmotive force was dominated by the membrane potential (negative inside) or the pH gradient (alkaline inside). Under these conditions, ATP synthesis could be blocked by the ATPase inhibitor, dicyclohexylcarbodiimide, or by ionophores which rendered the membrane specifically permeable to protons. These observations provide strong evidence in support of the chemiosmotic hypothesis, which states that the membrane-bound ATPase couples the inward movement of protons to the synthesis of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, A., Smith, J.B., Baron, C. 1972. Carbodiimide-resistant membrane adenosine triphosphatase in mutants ofStreptococcus faecalis. I. Studies of the mechanisms of resistance.J. Biol. Chem. 247:1484

    PubMed  Google Scholar 

  • Addanki, S., Cahill, F.D., Sotos, J.F. 1968. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. 1. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++ and Zn++.J. Biol. Chem. 243:2337

    PubMed  Google Scholar 

  • Altendorf, K.H., Harold, F.M., Simoni, R.D. 1974. Impairment and restoration of the energized state in membrane vesicles of a mutant ofEscherichia coli lacking adenosine triphosphatase.J. Biol. Chem. 249:4587

    PubMed  Google Scholar 

  • Altendorf, K., Hirata, H., Harold, F.M. 1975. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles ofEscherichia coli.J. Biol. Chem. 250:1405

    PubMed  Google Scholar 

  • Asghar, S.S., Levin, E., Harold, F.M. 1973. Accumulation of neutral amino acids byStreptococcus faecalis. Energy coupling by a protonmotive force.J. Biol. Chem. 248:5225

    PubMed  Google Scholar 

  • Azzone G.F., Massari, S. 1971. Thermodynamic and kinetic aspects of the interconversion of chemical and osmotic energies in mitochondria.Eur. J. Biochem. 19:97

    PubMed  Google Scholar 

  • Berger, E.A. 1973. Different mechanisms of energy coupling for active transport of proline and glutamine inEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1514

    PubMed  Google Scholar 

  • Berger, E.A., Heppel, L.A. 1974. Different mechanisms of energy coupling for shock-sensitive and shock-resistant amino acid permeases ofEscherichia coli.J. Biol. Chem. 249:7747

    PubMed  Google Scholar 

  • Bragg, P.D., Hou, C. 1973. Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants ofEscherichia coli.Biochem. Biophys. Res. Commun. 50:729

    PubMed  Google Scholar 

  • Butlin, J.D., Cox, G.B., Gibson, F. 1971. Oxidative phosphorylation inEscherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase.Biochem. J. 124:75

    Google Scholar 

  • Citti, J.E., Sandine, W.E., Elliker, P.R. 1965. β-Galactosidase ofStreptococcus lactis.J. Bacteriol. 89:937

    PubMed  Google Scholar 

  • Cockrell, R.S., Harris, E.J., Pressman, B.C. 1966. Synthesis of ATP driven by a potassium gradient in mitochondria.Nature 215:1487

    Google Scholar 

  • Cole, H.A., Wimpenny, J.W.T., Hughes, D.E. 1967. The ATP pool inEscherichia coli. I. Measurement of the pool using a modified luciferase assay.Biochim. Biophys. Acta 143:445

    PubMed  Google Scholar 

  • Cole, J.S., Aleem, M.I.H. 1973. Electron transport-linked compared with proton-induced ATP generation inThiobacillus novellus.Proc. Nat. Acad. Sci. USA 70:3571

    PubMed  Google Scholar 

  • Cox, G.B., Gibson, F. 1974. Studies on electron transport and energy-linked reactions using mutants ofEscherichia coli.Biochim. Biophys. Acta 346:1

    PubMed  Google Scholar 

  • Cox, G.B., Gibson, F., McCann, L. 1974. Oxidative phosphorylation inEscherichia coli K12. An uncoupled mutant with altered membrane structure.Biochem. J. 138:211

    Google Scholar 

  • Cox, G.B., Newton, N.A., Butlin, J.D., Gibson, F. 1971. The energy-linked transhydrogenase reaction in respiratory mutants ofEscherichia coli K12.Biochem. J. 125:489

    Google Scholar 

  • Danon, A., Stoeckenius, W. 1974. Photophosphorylation inHalobacterium halobium.Proc. Nat. Acad. Sci. USA 71:1234

    PubMed  Google Scholar 

  • Drozd, J.W. 1974. Respiration-driven proton translocation inThiobacillus neapolitanus C.FEBS Lett. 49:103

    PubMed  Google Scholar 

  • Evans, D.J. 1970. Membrane Mg2+-(Ca2+)-activated adenosine triphosphatase ofEscherichia coli: Characterization in the membrane-bound and solubilized states.J. Bacteriol. 104:1203

    Google Scholar 

  • Glynn, I.M. 1967. Involvement of a membrane potential in the synthesis of ATP by mitochondria.Nature 216:1318

    PubMed  Google Scholar 

  • Greville, G.D. 1969. A scrutiny of Mitchell's chemiosmotic hypothesis.Curr. Top. Bioenerget. 3:1

    Google Scholar 

  • Griniuviene, B., Chmieliauskaite, V., Grinius, L. 1974. Energy-linked transport of permeant ions inEscherichia coli cells: Evidence for a membrane potential generation by a proton pump.Biochem. Biophys. Res. Commun. 56:206

    Google Scholar 

  • Gromet-Elhanan, Z., Leiser, M. 1975. Postillumination adenosine triphosphate synthesis inRhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential.J. Biol. Chem. 250:90

    PubMed  Google Scholar 

  • Gutnick, D.L., Kanner, B.I., Postma, P.W. 1972. Oxidative phosphorylation in mutants ofEscherichia coli defective in energy transduction.Biochim. Biophys. Acta 283:217

    PubMed  Google Scholar 

  • Guynn, R.W., Veech, R.L. 1973. The equilibrium constants of the adenosine triphosphate hydrolysis and adenosine triphosphate-citrate lyase reactions.J. Biol. Chem. 248:6966

    PubMed  Google Scholar 

  • Harold, F.M. 1972. Conservation and transduction of energy by bacterial membranes.Bacteriol. Rev. 36:172

    PubMed  Google Scholar 

  • Harold, F.M., Baarda, J.R. 1967. Gramicidin, valinomycin, and cation permeability ofStreptococcus faecalis.J. Bacteriol. 94:53

    PubMed  Google Scholar 

  • Harold, F.M., Baarda, J.R., Baron, C., Abrams, A. 1969. Inhibition of membrane-bound adenosine triphosphatase and cation transport inStreptococcus faecalis by N,N′-dicyclohexylcarbodiimide.J. Biol. Chem. 244:2261

    PubMed  Google Scholar 

  • Harold, F.M., Papineau, D. 1972a. Cation transport and electrogenesis byStreptococcus faecalis. I. The membrane potential.J. Membrane Biol. 8:27

    Google Scholar 

  • Harold, F.M., Papineau, D. 1972b. Cation transport and electrogenesis byStreptococcus faecalis. II. Proton and sodium extrusion.J. Membrane Biol. 8:45

    Google Scholar 

  • Harold, F.M., Pavlasova, E., Baarda, J.R. 1970. A transmembrane pH gradient inStreptococcus faecalis: Origin, and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide.Biochim. Biophys. Acta 196:235

    PubMed  Google Scholar 

  • Hertzberg, E.L., Hinkle, P.C. 1974. Oxidative phosphorylation and proton translocation in membrane vesicles prepared fromEscherichia coli.Biochem. Biophys. Res. Commun. 58:178

    Google Scholar 

  • Hirata, H., Altendorf, K.H., Harold, F.M. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesciels ofEscherichia coli.Proc. Nat. Acad. Sci. USA 70:1804

    PubMed  Google Scholar 

  • Jagendorf, A.T., Uribe, E. 1966. ATP formation caused by acid-base transition of spinach chloroplasts.Proc. Nat. Acad. Sci. USA 55:170

    PubMed  Google Scholar 

  • Kanner, B.I., Gutnick, D.L. 1972. Energy linked nicotinamide adenine nucleotide transhydrogenase in a mutant ofEscherichia coli K12 lacking membrane Mg2+-Ca2+-activated adenosine triphosphatase.FEBS Lett. 22:197

    PubMed  Google Scholar 

  • Kashket, E.R., Wilson, T.H. 1972a. Galactoside accumulation associated with ion movements inStreptococcus lactis.Biochem. Biophys. Res. Commun. 49:615

    Google Scholar 

  • Kashket, E.R., Wilson, T.H. 1972b. Role of metabolic energy in the transport of β-galactosides byStreptococcus lactis.J. Bacteriol. 100:784

    Google Scholar 

  • Kashket, E.R., Wilson, T.H. 1973. Proton-coupled accumulation of galactoside inStreptococcus lactis 7962.Proc. Nat. Acad. Sci. USA 70:2866

    PubMed  Google Scholar 

  • Kashket, E.R., Wong, P.T.S. 1969. The intracellular pH ofEscherichia coli.Biochim. Biophys. Acta 193:212

    PubMed  Google Scholar 

  • Klein, W.L., Boyer, P.D. 1972. Energization of active transport byEscherichia coli.J. Biol. Chem. 247:7257

    PubMed  Google Scholar 

  • Kobayashi, H., Kin, E., Anraku, Y. 1974. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of active transport systems for isoleucine and proline inE. coli.J. Biochem. (Tokyo) 76:251

    Google Scholar 

  • Laris, P.C., Pershadsingh, H.A. 1974. Estimations of membrane potentials inStreptococcus faecalis by means of a fluorescent probe.Biochem. Biophys. Res. Commun. 57:620

    Google Scholar 

  • Larsen, S.H., Adler J., Gargus, J.J., Hogg, R.W. 1974. Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria.Proc. Nat. Acad. Sci. USA 71:1239

    PubMed  Google Scholar 

  • Lawford, H.G., Haddock, B.A. 1973. Respiration-driven proton translocation inEscherichia coli.Biochem. J. 136:217

    Google Scholar 

  • Leiser, M., Gromet-Elhanan, Z. 1974. Demonstration of acid-base phosphorylation in chromatophores in the presence of a K+ diffusion potential.FEBS Lett. 43:267

    PubMed  Google Scholar 

  • Maloney, P.C., Kashket, E.R., Wilson, T.H. 1974. A protonmotive force drives ATP synthesis in bacteria.Proc. Nat. Acad. Sci. USA 71:3896

    PubMed  Google Scholar 

  • Mevel-Ninio, M., Yamamoto, T. 1974. Conversion of active transport vesicles ofEscherichia coli into oxidative phosphorylation vesicles.Biochim. Biophys. Acta 357:63

    PubMed  Google Scholar 

  • Meyer, D.J., Jones, C.W. 1973. Oxidative phosphorylation in bacteria which contain different cytochrome oxidases.Eur. J. Biochem. 36:144

    Google Scholar 

  • Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism.Nature 191:144

    PubMed  Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. (Cambridge) 41:455

    Google Scholar 

  • Mitchell, P., Moyle, J. 1968. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria.Eur. J. Biochem. 4:530

    Google Scholar 

  • Nieuwenhuis, F.J.R.M., Kanner, B.I., Gutnick, D.L., Postma, P.W., Van Dam K. 1973. Energy conservation in membranes of mutants ofEscherichia coli defective in oxidative phosphorylation.Biochim. Biophys. Acta 325:62

    PubMed  Google Scholar 

  • Or, A., Kanner, B.I., Gutnick, D.L. 1973. Active transport in mutants ofEscherichia coli with alterations in the membrane ATPase complex.FEBS Lett. 35:217

    PubMed  Google Scholar 

  • Pressman, B.C. 1968. Ionophorous antibiotics as models for biological transport.Fed. Proc. 27:1283

    PubMed  Google Scholar 

  • Racker, E., Stoeckenius, W. 1974. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation.J. Biol. Chem. 249:662

    PubMed  Google Scholar 

  • Reeves, J.P. 1971. Transient pH changes duringd-lactate oxidation by membrane vesicles.Biochem. Biophys. Res. Commun. 45:931

    Google Scholar 

  • Reid, R.A., Moyle, J., Mitchell, P. 1966. Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria.Nature 212:257

    PubMed  Google Scholar 

  • Rosen, B.P. 1973. Restoration of active transport in an Mg1+-adenosine triphosphatase-deficient mutant ofEscherichia coli.J. Bacteriol. 116:1124

    PubMed  Google Scholar 

  • Rossi, E., Azzone, G.F. 1970. The mechanisms of ion translocation in mitochondria. 3. Coupling of K+ efflux with ATP synthesis.Eur. J. Biochem. 12:319

    Google Scholar 

  • Rottenberg, H., Grunwald, T., Avron, M. 1972. Determination of pH in chloroplasts. 1. Distribution of (14C)-methylamine.Eur. J. Biochem. 25:54

    PubMed  Google Scholar 

  • Schairer, H.U., Haddock, B.A. 1972. β-Galactoside accumulation in a Mg2+-, Ca2+-activated ATPase deficient mutant ofE. coli.Biochem. Biophys. Res. Commun. 48:544

    Google Scholar 

  • Scholes, P., Mitchell, P. 1970. Respiration-driven proton translocation inMicrococcus denitrificans.J. Bioenerg. 1:309

    Google Scholar 

  • Schuldiner, S., Rottenberg, H., Avron, M. 1972. Membrane potential as a driving force for ATP synthesis in chloroplasts.FEBS Lett. 28:173

    PubMed  Google Scholar 

  • Schuldiner, S., Rottenberg, H., Avron, M. 1973. Stimulation of ATP synthesis by a membrane potential in chloroplasts.Eur. J. Biochem. 39:455

    Google Scholar 

  • Simoni, R.D., Shallenberger, M.K. 1972. Coupling of energy to active transport of amino acids inEscherichia coli.Proc. Nat. Acad. Sci. USA 69:2663

    PubMed  Google Scholar 

  • Thayer, W.S., Hinkle, P.C. 1973. Stoichiometry of adenosine triphosphate-driven proton translocation in bovine heart mitochondria particles.J. Biol. Chem. 248:5395

    PubMed  Google Scholar 

  • Thayer, W.S., Hinkle, P.C. 1975. Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles.J. Biol. Chem. 250:5330

    PubMed  Google Scholar 

  • Thipayathasana, P., Valentine, R.C. 1974. The requirement for energy transducing ATPase for anaerobic motility inEscherichia coli.Biochim. Biophys. Acta 347:464

    PubMed  Google Scholar 

  • Uribe, E.G. 1973. ATP synthesis driven by a K+-valinomycin-induced charge imbalance across chloroplast grana membranes.FEBS Lett. 36:143

    PubMed  Google Scholar 

  • Uribe, E.G., Li, B.C.Y. 1973. Stimulation and inhibition of membrane-dependent ATP synthesis in chloroplasts by artificially induced K+ gradients.J. Bioenerg. 4:435

    PubMed  Google Scholar 

  • Van Thienen, G., Postma, P.W. 1973. Coupling between energy conservation and active transport of serine inEscherichia coli.Biochim. Biophys. Acta 323:429

    PubMed  Google Scholar 

  • West, I.C. 1974. The membrane adenosine triphosphatase of bacteria.Biochem. Soc. Spec. Publ. 4:27

    Google Scholar 

  • West, I.C., Mitchell, P. 1972. Proton-coupled β-galactoside translocation in non-metabolizingEscherichia coli.J. Bioenerg. 3:445

    PubMed  Google Scholar 

  • West, I.C., Mitchell, P. 1974a. The proton-translocating ATPase ofEscherichia coli.FEBS Lett. 40:1

    PubMed  Google Scholar 

  • West, I.C., Mitchell, P. 1974b. Proton/sodium ion antiport inEscherichia coli.Biochem. J. 144:87

    Google Scholar 

  • Yamamoto, T.H., Mevel-Ninio, M., Valentine, R.C. 1973. Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport inEscherichia coli.Biochim. Biophys. Acta 314:267

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, P.C., Wilson, T.H. ATP synthesis driven by a protonmotive force inStreptococcus lactis . J. Membrain Biol. 25, 285–310 (1975). https://doi.org/10.1007/BF01868580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868580

Keywords

Navigation