Skip to main content
Log in

The nature of the voltage-dependent conductance of the hemocyanin channel

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The electrical responses of individual hemocyanin channels in oxidized cholesterol membranes demonstrate that the voltage-dependent conductance of many-channel membranes arises from two different mechanisms. These are the voltage-dependent redistribution of channels among several discrete single-channel conductance states and the continuously voltage-dependent conductance of the single-channel states themselves. The relaxation time for the discrete conductance changes is of the order of seconds and the relaxation time of the continuous conductance changes is of the order 10−4 seconds. As salt concentration in the bathing medium is increased, the single-channel conductance first increases linearly and then saturates. The characteristics of the saturation curves suggest that the continuous conductance changes occur at the edges of the channel and that the mean time an ion spends in the channel is 4 nanoseconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, O., Diaz, E., Latorre, R. 1975. Voltage-dependent conductance induced by hemocyanin in black lipid films.Biochim. Biophys. Acta 389:444

    PubMed  Google Scholar 

  • Alvarez, O., Latorre, R., Verdugo, P. 1975. Kinetic characteristics of the EIM channel in oxidized cholesterol and brain lipid bilayer membranes.J. Gen. Physiol. 65:421

    PubMed  Google Scholar 

  • Bean, R.C., Shepherd, W.C., Chan, H., Eichner, J.T. 1969. Discrete conductance fluctuations in lipid bilayer protein membranes.J. Gen. Physiol. 53:741

    PubMed  Google Scholar 

  • Cole, K.S. 1965. Electrodiffusion models for the membrane of squid giant axon.Physiol. Rev. 45:340

    PubMed  Google Scholar 

  • Ehrenstein, G., Blumenthal, R., Latorre, R., Lecar, H. 1974. Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer.J. Gen. Physiol. 63:707

    PubMed  Google Scholar 

  • Ehrenstein, G., Lecar, H. 1972. The mechanism of signal transmission in nerve axons.Annu. Rev. Biophys. Bioeng. 1:347

    PubMed  Google Scholar 

  • Ehrenstein, G., Lecar, H., Nossal, R. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material.J. Gen. Physiol. 55:119

    PubMed  Google Scholar 

  • Eisenberg, M., Hall, J.E., Mead, C.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143

    Google Scholar 

  • Gordon, L.G.M., Haydon, D.A. 1972. The unit conductance channel of alamethicin.Biochim. Biophys. Acta 255:1014

    PubMed  Google Scholar 

  • Hille, B. 1970. Ionic channels in nerve membranes.Prog. Biophys. Mol. Biol. 21:1

    PubMed  Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599

    PubMed  Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics.Nature 225:451

    PubMed  Google Scholar 

  • Knott, G.D., Reece, D.K. 1972. MLAB: A civilized curve-fitting system.In: Proc. ONLINE '72 Int. Conf., Brunel University, England1:497

  • Konings, W.N., Siezen, R.J., Gruber, M. 1969. Structure and properties of hemocyanins. VI. Association-dissociation behaviour ofHelix pomatia hemocyanin.Biochim. Biophys. Acta 194:376

    PubMed  Google Scholar 

  • Latorre, R., Ehrenstein, G., Lecar, H. 1972. Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes.J. Gen. Physiol. 60:72

    PubMed  Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate theory analysis.Biochim. Biophys. Acta 311:423

    PubMed  Google Scholar 

  • Montal, M., Mueller, P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Nat. Acad. Sci. USA 69:3561

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D.O., Tien, H.T., Wescott, W.C. 1964. Formation and properties of bimolecular lipid membranes.Rec. Prog. Surface Sci. 1:379

    Google Scholar 

  • Pant, H.C., Conran, P. 1972. Keyhole limpet hemocyanin (KLH)—lipid bilayer membrane (BLM) interaction.J. Membrane Biol. 8:357

    Google Scholar 

  • van Bruggen, E.F.J., Schuiten, V., Wiebenga, E.H., Gruber, M. 1963. Structure and properties of hemocyanins. III. Electron micrographs of hemocyanins from different gastropoda and crustacea.J. Mol. Biol. 7:249

    Google Scholar 

  • van Bruggen, E.F.J., Wiebenga, E.H., Gruber, M. 1962a. Structure and properties of hemocyanins. I. Electron micrographs of hemocyanin and apohemocyanin fromHelix pomatia at different pH values.J. Mol. Biol. 4:1

    PubMed  Google Scholar 

  • van Bruggen, E.F.J., Wiebenga, E.H., Gruber, M. 1962b. Structure and properties of hemocyanins. II. Electron micrographs of the hemocyanins ofSepia officinalis, Octopus vulgaris, andCancer pagurus.J. Mol. Biol. 4:8

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, R., Alvarez, O., Ehrenstein, G. et al. The nature of the voltage-dependent conductance of the hemocyanin channel. J. Membrain Biol. 25, 163–181 (1975). https://doi.org/10.1007/BF01868573

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868573

Keywords

Navigation