The Journal of Membrane Biology

, Volume 25, Issue 1, pp 115–139 | Cite as

Electrical properties of the cellular transepithelial pathway inNecturus gallbladder

I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions
  • Luis Reuss
  • Arthur L. Finn


Microelectrode techniques were employed to measure the electrical resistance of the cell membranes and the shunt pathway, and the equivalent electromotive forces (EMF's) at both cell borders inNecturus gallbladder epithelium. The cell is, on the average, 57 mV negative to the mucosal solution and 59 mV negative to the serosal solution. The transepithelial potential (Vms) ranges from 0.5 to 5 mV, serosal solution positive. Assuming that the shunt EMF (Vs) is zero with standard Ringer's bathing both sides of the tissue, both cell membrane EMF's are oriented with the negative pole toward the cell interior and are 39.9±3.6 mV (apical,Va), and 69.4±1.8 mV (basal-lateral,Vb). The values of the resistances of the cell membranes and the shunt are similar to those previously reported by others: apical (Ra), 3350±390 Ω cm2, basal-lateral (Rb) 2750±320 Ω cm2, shunt (Rs), 480±50 Ω cm2. Ionic substitutions on the mucosal side produce changes in both EMF and resistance of the apical membrane and the shunt pathway. Increasing K concentration to 112mm reversesVa and greatly reducesRa. Complete Na replacement with an inert nonpermeant cation slightly increasesVa andRa. These results indicate that across the apical membranePK>PNa. Analogous measurements ofVs indicate cation permselectivity, withPK>PNa>PcholinePTEAPmethylglucamine. In general, changes inVs are very similar to the changes inVms, indicating that the latter measurements yield adequate information on the properties of the shunt. The fact thatPNa>PCl across the shunt rules out the possibility thatVms is generated by a NaCl concentration gradient across the limiting junction.


Apical Membrane Negative Pole Electromotive Force Produce Change Cell Border 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, C.M. 1966. Time course of TEA+-induced anomalous rectification in squid giant axons.J. Gen. Physiol. 50:491PubMedGoogle Scholar
  2. 2.
    Barry, R.J.C., Eggenton, J. 1972. Membrane potentials of epithelial cells in rat small intestine.J. Physiol. 227:201PubMedGoogle Scholar
  3. 3.
    Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 91. Schattauer-Verlag, StuttgartGoogle Scholar
  4. 4.
    Boulpaep, E.L., Seely, J.F. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney.Amer. J. Physiol. 221:1084PubMedGoogle Scholar
  5. 5.
    Burg, M.B., Orloff, J. 1970. Electrical potential difference across proximal convoluted tubules.Amer. J. Physiol. 219:1714PubMedGoogle Scholar
  6. 6.
    Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543PubMedGoogle Scholar
  7. 7.
    Diamond, J.M. 1962. The reabsorptive function of the gallbladder.J. Physiol. 161:442Google Scholar
  8. 8.
    Diamond, J.M. 1962. The mechanism of solute transport by the gallbladder.J. Physiol. 161:474Google Scholar
  9. 9.
    Diamond, J.M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology: Alimentary Canal. Vol. 5, p. 2451. American Physiological Society, Washington, D.C.Google Scholar
  10. 10.
    Diamond, J.M., Barry, P.H., Wright, E.M. 1971. The route of transepithelial ion permeation in the gallbladder.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 23. Schattauer-Verlag, StuttgartGoogle Scholar
  11. 11.
    Diamond, J.M., Bossert, W.H. 1967. Standing gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061PubMedGoogle Scholar
  12. 12.
    Diamond, J.M., Harrison, S.C. 1966. The effect of fixed charges upon diffusion potentials and streaming potentials.J. Physiol. 183:37PubMedGoogle Scholar
  13. 13.
    Dietschy, J.M. 1964. Water and solute movement across the wall of the everted rabbit gallbladder.Gastroenterology 47:395PubMedGoogle Scholar
  14. 14.
    Eisenberg, R.S., Johnson, E.A. 1970. Three-dimensional electrical field problems in physiology.Prog. Biophys. Mol. Biol. 20:1Google Scholar
  15. 15.
    Finn, A.L., Reuss, L. 1975. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium.J. Physiol. 250:541PubMedGoogle Scholar
  16. 16.
    Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318PubMedGoogle Scholar
  17. 17.
    Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259Google Scholar
  18. 18.
    Frömter, E., Diamond, J.M. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9Google Scholar
  19. 19.
    Frömter, E., Hegel, U. 1966. Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere.Pflügers Arch. 291:107Google Scholar
  20. 20.
    Frömter, E., Müller, C.W., Wick, T. 1971. Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 119. Schattauer-Verlag, StuttgartGoogle Scholar
  21. 21.
    Gatzy, J.T., Clarkson, T.W. 1965. The effect of mucosal and serosal solution cations on bioelectric properties of the isolated toad bladder.J. Gen. Physiol. 48:647PubMedGoogle Scholar
  22. 22.
    Gelarden, R.T., Rose, R.C. 1974. Electrical properties and diffusion potentials in the gallbladder of man, monkey, dog, goose and rabbit.J. Membrane Biol. 19:37Google Scholar
  23. 23.
    Giebisch, G. 1961. Measurements of electrical potential difference on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659PubMedGoogle Scholar
  24. 24.
    Hille, B. 1967. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.J. Gen. Physiol. 50:1287PubMedGoogle Scholar
  25. 25.
    Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. 148:127PubMedGoogle Scholar
  26. 26.
    Kokko, J.P. 1973. Proximal tubule potential difference. Dependence on glucose, HCO3, and amino acids.J. Clin. Invest. 52:1362PubMedGoogle Scholar
  27. 27.
    Leb, D.E., Hoshiko, T., Lindley, B.D. 1965. Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder.J. Gen. Physiol. 48:527PubMedGoogle Scholar
  28. 28.
    Machen, T.E., Diamond, J.M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport.J. Membrane Biol. 1:194Google Scholar
  29. 29.
    Moreno, J.H. 1974. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia.Nature 251:150PubMedGoogle Scholar
  30. 30.
    Politoff, A.L., Socolar, S.J. 1971. Uncoupling cell junctions in a glandular epithelium by depolarizing current.Science 172:492PubMedGoogle Scholar
  31. 31.
    Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1PubMedGoogle Scholar
  32. 32.
    Reuss, L., Finn, A.L. 1975. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71PubMedGoogle Scholar
  33. 33.
    Reuss, L., Finn, A.L. 1975. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141Google Scholar
  34. 34.
    Rose, B. 1970. Junctional membrane permeability: Restoration by repolarizing current.Science 169:607PubMedGoogle Scholar
  35. 35.
    Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol. 57:639PubMedGoogle Scholar
  36. 36.
    Schultz, S.G. 1972. Electrical potential differences and electromotive forces in epithelial tissues.J. Gen. Physiol. 59:794PubMedGoogle Scholar
  37. 37.
    Schultz, S.G., Zalusky, R. 1964. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport.J. Gen. Physiol. 47:1043PubMedGoogle Scholar
  38. 38.
    Shiba, H. 1971. Heavisides “Bessel Cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes.J. Theoret. Biol. 30:59Google Scholar
  39. 39.
    Strickholm, A., Wallin, B.G. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.J. Gen. Physiol. 50:1929PubMedGoogle Scholar
  40. 40.
    Wheeler, H.O. 1963. Transport of electrolytes and water across wall of rabbit gall-bladder.Amer. J. Physiol. 205:427PubMedGoogle Scholar
  41. 41.
    Whitlock, R.T., Wheeler, H.O. 1964. Coupled transport of solute and water across rabbit gall-bladder epithelium.J. Clin. Invest. 43:2249PubMedGoogle Scholar
  42. 42.
    Whittembury, G. 1971. Relationship between sodium extrusion and electrical potentials in kidney cells.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 153. Schattauer-Verlag, StuttgartGoogle Scholar
  43. 43.
    Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1967. Electrophysiological studies in single nephrons.Proc. 3rd Int. Congr. Nephrol., Washington 1966. p. 35. Karger, Basel-New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1975

Authors and Affiliations

  • Luis Reuss
    • 1
  • Arthur L. Finn
    • 1
  1. 1.Department of MedicineUniversity of North Carolina School of MedicineChapel Hill

Personalised recommendations