Skip to main content
Log in

Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ion-carrier complexes and organic ions of similar size and shape have mobilities in lipid bilayer membranes which span several orders of magnitude. In this communication, an examination is made of the hypothesis that the basis for this unusually wide range of ionic mobilities is the potential energy barrier arising from image forces which selectively act on ions according to their polarizability. Using Poisson's equation to evaluate the electrostatic interaction between an ion and its surroundings, the potential energy barrier to ion transport due to image effects is computed, with the result that the potential energy barrier height depends strongly on ionic polarizability.

Theoretical membrane potential energy profile calculations are used in conjunction with the Nernst-Planck electrodiffusion equation to analyze the available mobility data for several ion-carrier complexes and lipid-soluble ions in lipid bilayer membranes. The variation among the mobilities of different ions is shown to be in agreement with theoretical predictions based on ionic polarizability and size. Furthermore, the important influence exerted by image forces on ion transport in lipid bilayer membranes compared to the frictional effect of membrane viscosity is established by contrasting available data on the activation energy of ionic conductivity with that for membrane fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

spherical conductor radius

c :

ionic concentration in the membrane

c w :

ionic concentration in the aqueous solution

E :

electric field strength/(RT/ℱL)

e :

elementary charge

F :

image force

ΔH η :

activation energy for microviscosity

ΔH k :

activation energy for electrodiffusion

J :

current flux

k :

electrodiffusion rate constant for lim ψ→0 defined byJ=ckψLℱ

k s :

modified electrodiffusion rate constant

L :

membrane width

P :

arbitrary image charge from one of Eqs. (14)–(17)

Q :

ionic charge

R :

gas law constant

r :

ionic radius

S :

sum of image charges within spherical conductor

T :

absolute temperature

u :

Stokes-Einstein mobility (footnote 1)

α:

polarizability

β:

I−εII)/(εIII)

γ:

see Fig. 2

δ:

see Fig. 2

ε:

dielectric constant

ε0 :

permittivity of free space

ζ:

radial space coordinate/L

η:

microviscosity relative to di(18∶1)-PC

θ:

see Fig. 2

Θ:

ionic charge/e

Λ:

constant defined in Eq.(44)

λ:

A/L

μ:

Poisson's equation constant

ξ:

axial space coordinate/L

P:

image charge/e

ϱ:

space charge density/(e/L 3)

Φ:

effective potential energy barrier

φ:

potential energy/RT

χ:

separation distance between an arbitrary charge and a charged spherical conductor

ψ:

electric potential/(RT/ℱ)

2 :

Laplacian

ℱ:

Faraday constant

D :

Stokes-Einstein diffusivity

ℓ:

L/L(di(18∶1)-PC)

C :

chemical

E :

electrostatic

M, N :

image charge indices

Q :

refers to ion (source charge)

R :

refers to location of ion binding site within the membrane

I, II, III:

dielectric regions

*:

denotes maximum potential energy, ϕ * E

TPhB :

tetraphenylboride anion

DPA :

dipicrylamine anion

CCCP :

carbonylcyanidem-chlorophenylhydrazone anion

egg PC:

phosphatidyl choline from egg yolk

di(N∶1)-PC:

diacylphosphatidyl choline of an N-carbon mono-unsaturated fatty acid

GMO:

glyceryl monooleate

GMER:

glyceryl monoerucin

CHL:

cholesterol

PI:

phosphatidyl inositol

PS:

phosphatidyl serine

DPPC:

dipalmitoyl phosphatidyl choline

BPE:

bacterial phosphatidyl ethanolamine

PE:

phosphatidyl ethanolamine

References

  1. Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers: Studies with tetraphylborate.Biophys. J. 15:795

    PubMed  Google Scholar 

  2. Anderson, J.E., Jackson, H.W. 1974. Membrane-water partition coefficients of ions. Calculated effects of membrane thickness.J. Phys. Chem. 78:2259

    Google Scholar 

  3. Barker, R.E., Jr., Thomas, C.R. 1964. Glass transition and ionic conductivity in cellulose acetate.J. Appl. Phys. 35:87

    Google Scholar 

  4. Barrer, R.M., Rees, L.V.C. 1960. Energies of activation for self-diffusion of alkali metal ions in analcite.Nature 187:768

    Google Scholar 

  5. Benz, R., Stark, G. 1975. Kinetics of macrotetralide-induced ion transport across lipid bilayer membranes.Biochim. Biophys. Acta 382:27

    PubMed  Google Scholar 

  6. Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Google Scholar 

  7. Bondi, A. 1968. Physical Properties of Molecular Crystals, Liquids and Glasses. pp. 453–468. Wiley, New York

    Google Scholar 

  8. Böttcher, C.J.F. 1973. Theory of Electric Polarization Vol. I, p. 86. Elsevier Publishing Co., New York

    Google Scholar 

  9. Ciani, S., Laprade, R., Eisenman, G. Szabo, G. 1973. Theory for carrier-mediated zerocurrent conductance of bilayers extended to allow for nonequilibrium of interfacial reactions, spatially dependent mobilities and barrier shape.J. Membrane Biol. 11:255

    Google Scholar 

  10. Cogan, U., Shinitzky, M., Weber, G., Nishida, T. 1973. Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid-cholesterol dispersions determined with fluorescent probes.Biochemistry 12:521

    PubMed  Google Scholar 

  11. Coster, H.G.L., Smith, J.R. 1974. The molecular organization of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance.Biochim. Biophys. Acta 373:151

    PubMed  Google Scholar 

  12. Fettiplace, R., Andrews, D.M., Haydon, D.A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277

    Article  Google Scholar 

  13. Fuoss, R.M., Hirsch, E. 1960. Single ion conductances in non-aqueous solvents.J. Amer. Chem. Soc. 82:1013

    Google Scholar 

  14. Galla, H.-J., Sackmann, E. 1974. Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes.Biochim. Biophys. Acta 339:103

    PubMed  Google Scholar 

  15. Gambale, F., Gliozzi, A., Robello, M. 1973. Determination of rate constants in carrier-mediated diffusion through lipid bilayers.Biochim. Biophys. Acta 330:325

    PubMed  Google Scholar 

  16. Gilkerson, W.R., Srivastava, K.K. 1961. The dielectric properties of tetra-n-butylammonium picrate, bromide and tetraphenylboride in some polar solvents at 25°C.J. Phys. Chem. 65:272

    Google Scholar 

  17. Gilkerson, W.R., Stewart, J.C. 1961. Polarizabilities and molar volumes of a number of salts in several solvents at 25°C.J. Phys. Chem. 65:1465

    Google Scholar 

  18. Hall, J.E., Mead, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75

    Google Scholar 

  19. Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems.Q. Rev. Biophys. 5:187

    PubMed  Google Scholar 

  20. Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes.Biochim. Biophys. Acta 352:71

    PubMed  Google Scholar 

  21. Hladky, S.B., Gordon, C.G.M., Haydon, D.A. 1974. Molecular mechanisms of ion transport in lipid membranes.Annu. Rev. Phys. Chem. 25:11

    Google Scholar 

  22. Jacobsen, K., Wobschall, D. 1974. Rotation of fluorescent probes localized within lipid bilayer membranes.Chem. Phys. Lipids 12:117

    PubMed  Google Scholar 

  23. Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225

    Google Scholar 

  24. Krasne, S., Eisenman, G. 1973. The molecular basis of ion selectivity.In: Membranes. A Series of Advances. G. Eisenman, editor. p. 277. Marcel Dekker, Inc., New York

    Google Scholar 

  25. Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of monactin, valinomycin and gramicidin.Science 174:412

    PubMed  Google Scholar 

  26. LeBlanc, O.H., Jr. 1969. Tetraphenylborate conductance through lipid bilayer membranes.Biochim. Biophys. Acta 193:350

    PubMed  Google Scholar 

  27. LeBlanc, O.H., Jr. 1971. Effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcynanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227

    Google Scholar 

  28. Neumcke, B., Läuger, P. 1969. Non-linear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160

    PubMed  Google Scholar 

  29. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature 221:844

    PubMed  Google Scholar 

  30. Rosenberg, B., Bhowmik, B.B. 1969. Donor-acceptor complexes and the semiconductivity of lipids.Chem. Phys. Lipids 3:109

    Google Scholar 

  31. Ryan, T.H., Koryta, J., Hofananova-Matjekova, A., Brezina, M. 1974. Polarography of alkali metal ion complexes of macrotetralides: Complex ion size and stability.Anal. Lett. 7:335

    Google Scholar 

  32. Shinitzky, M., Barenholz, Y. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate.J. Biol. Chem. 249:2652

    PubMed  Google Scholar 

  33. Simon, W., Morf, W.E., Meier, P.Ch. 1973. Specificity for alkali and alkaline earth cations of synthetic and natural organic complexing agents in membranes.Struct. Bonding (Berlin) 16:113

    Google Scholar 

  34. Smythe, W.R. 1968. Static and Dynamic Electricity. p. 22. McGraw-Hill, New York

    Google Scholar 

  35. Stark, G., Benz, R., Pohl, G.W., Janko, K. 1972. Valinomycin as a probe for the study of structural changes of black lipid membranes.Biochim. Biophys. Acta 266:603

    PubMed  Google Scholar 

  36. Stark, G., Ketterer, B., Benz, R., Läuger, P. 1971. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.Biophys. J. 11:981

    PubMed  Google Scholar 

  37. Szabo, G. 1973. Location of cations complexed by neutral carriers in lipid bilayer membranes.Biophys. J. 15:306a

    Google Scholar 

  38. Tredgold, R.H. 1973. Hydration energy and the transport of ions through membranes.Biochim. Biophys. Acta 323:143

    PubMed  Google Scholar 

  39. Vanderkooi, J.M., Callis, J.B. 1974. Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes.Biochemistry 13:4000

    Google Scholar 

  40. Vanderkooi, J., Fischkoff, S., Chance, B., Cooper, R.A. 1974. Fluorescent probe analysis of the lipid architecture of natural and experimental cholesterol-rich membranes.Biochemistry 13:1589

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, R.W., Robertson, C.R. Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes. J. Membrain Biol. 25, 93–114 (1975). https://doi.org/10.1007/BF01868570

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868570

Keywords

Navigation