Skip to main content
Log in

Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In the presence of 8mm external Ca++, the K+ permeability of human red cell ghosts increases provided K+ is also present in the medium. This increase does not represent K+/K+ exchange but a stimulation of net K+ efflux. The stimulation is halfmaximal at 0.7±0.15mm (n=5). At concentrations above 4.0mm, external K+ inhibits net K+ efflux. Similar stimulatory and inhibitory effects of external K+ were also observed in intact cells after exposure to Pb++ or to Ca++ in the presence of fluoride, iodoacetate plus adenosine, or propranolol, suggesting that a common K+-activated K+-specific transfer system may be involved under all of these various circumstances. Internal K+ also stimulates net K+ efflux from ghosts, but it is uncertain whether internal K+ is an absolute requirement for the K+ permeability increase.

In contrast to external Na+ which slightly stimulates K+ efflux, internal Na+ inhibits. The inhibition by internal Na+ is abolished by sufficiently high concentrations of external K+, showing that K+ binding to the outer membrane surface and Na+ binding to the internal surface are mutually interdependent.

In red cell ghosts the Ca++−K+-stimulated net K+ efflux increases with increasing pH until a plateau is reached between pH 7.2 and 8.0. In fluoride-poisoned intact cells, the Ca++−K+ stimulated flux passes through a maximum around pH 6.8.

Neither internal nor external Mg++ interferes with the combined effects of Ca++ and K+. Similarly, external EDTA has no influence at concentrations which are far lower than the Ca++ concentration required to produce a maximal response. In contrast, low concentrations of internal EDTA prevent the permeability change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1972. Ca-induced K transport in human red cells: Location of the Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146

    PubMed  Google Scholar 

  • Bodemann, H., Passow, H. 1972. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis.J. Membrane Biol. 8:1

    Google Scholar 

  • Dunker, E., Passow, H. 1953. Zwei Arten des Anionenaustausches bei den roten Blutkörperchen verschiedener Säugetiere.Pflügers Arch. 256:446

    Google Scholar 

  • Eckel, R.E. 1958. Potassium exchange in human erythrocytes. II. The division of cell potassium into two fractions during incubation with 0.025m NaF.J. Cell Comp. Physiol. 51:109

    Google Scholar 

  • Ekman, A., Manninen, V., Salminen, S. 1969. Ion movements in red cells treated with propranolol.Acta Physiol. Scand. 75:333

    PubMed  Google Scholar 

  • Gärdos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653

    PubMed  Google Scholar 

  • Gárdos, G. 1959. The role of calcium in the potassium permeability of human erythrocytes.Acta Physiol. (Budapest) 15:121

    Google Scholar 

  • Glynn, I.M., Warner, A.E. 1972. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrythmic effect.Br. J. Pharmacol. 44:271

    PubMed  Google Scholar 

  • Grigarzik, H., Passow, H. 1958. Versuche zum Mechanismus der Bleiwirkung auf die Kaliumpermeabilität roter Blutkörperchen.Pflügers Arch. 267:73

    Google Scholar 

  • Hoffman, J.F., Knauf, P.A. 1973. The mechanism of the increased K transport induced by Ca in human red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes: Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 66 Georg Thieme, Stuttgart

    Google Scholar 

  • Hunter, M. 1971. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell.J. Physiol. (London) 218:49P

    Google Scholar 

  • Kirschner, L.B., Harding, N. 1958. The effect of adenosine on phosphate esters and sodium extrusion in swine erythrocytes.Arch. Biochem. Biophys. 7754

    PubMed  Google Scholar 

  • Knauf, P.A., Riordan, J.R., Schuhmann, B., Passow, H. 1974. Effects of external potassium on calcium-induced potassium leakage from human red blood cell ghosts.In: Comparative Biochemistry and Physiology of Transport. K. Bloch, L. Bolis, and S.E. Luria, editors. p. 305. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Kregenow, F.M., Hoffman, J.F. 1962. Metabolic control of passive transport and exchange diffusion of Na and K in human red cells.Biophys. Soc. (Abstr.), Washington D.C.

  • Kregenow, F.M., Hoffman, J.F. 1972. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells.J. Gen. Physiol. 60:406

    PubMed  Google Scholar 

  • Lepke, S., Passow, H. 1960. Die Wirkung von Erdalkalimetallionen auf die Kationenpermeabilität fluoridvergifteter Erythrocyten.Pflügers Arch. 271:473

    Google Scholar 

  • Lew, V.L. 1971. On the ATP dependence of the Ca++-induced increase in K+ permeability observed in human red cells.Biochim. Biophys. Acta 233827

    PubMed  Google Scholar 

  • Lew, V.L. 1974. On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes.In: Comparative Biochemistry and Physiology of Transport. K. Bloch, L. Bolis, and S.E. Luria, editors. p. 310. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Lindemann, B., Passow, H. 1960. Versuche zur Aufklärung der Beziehung zwischen Glycolysehemmung und Kaliumverlust bei der Fluoridvergiftung von Menschenerythrocyten.Pflügers Arch. 271:497

    Google Scholar 

  • Manninen, V. 1970. Movements of sodium and potassium ions and their tracers in propranolol-treated red cells and diaphragm muscle.Acta Physiol. Scand. Suppl. 355:1

    PubMed  Google Scholar 

  • Passow, H. 1961. Zusammenwirken von Membranstruktur und Zellstoffwechsel bei der Regulierung der Ionenpermeabilität roter Blutkörperchen.In: Biochemie des Aktiven Transportes (Colloquium der Gesellschaft für Physiologische Chemie in Mosbach/Baden). p. 54. Springer, Berlin

    Google Scholar 

  • Passow, H. 1963. Metabolic control of passive cation permeability in human red cells.In: Cell Interface Reactions. H.D. Brown, editor. p. 57. Scholar's Library, New York

    Google Scholar 

  • Passow, H. 1964. Ion and water permeability of the red blood cell.In: The Red Blood Cell. C. Bishop and D.M. Surgenor, editors. p. 71. Academic Press, New York

    Google Scholar 

  • Passow, H. 1969. The molecular basis of ion discrimination in the erythrocyte membrane.In: The Molecular Basis of Membrane Function. D.C. Tosteson, editor. p. 319. Prentice-Hall, Inc., Englewood Cliffs, New Jersey

    Google Scholar 

  • Passow, H., Tillman, K. 1955. Untersuchungen über den Kaliumverlust bleivergifteter Menschenerythrocyten.Pflügers Arch. 262:23

    Google Scholar 

  • Passow, H., Vielhauer, E. 1966. Die Wirkung von Triosereduktion auf die K+- und Na+-Permeabilität roter Blutkörperchen.Pflügers Arch. 288:1

    Google Scholar 

  • Porzig, H. 1972. ATP-independent calcium net movements in human red cell ghosts.J. Membrane Biol. 8:237

    Google Scholar 

  • Riordan, J.R., Passow, H. 1971. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts.Biochim. Biophys. Acta 249:601

    PubMed  Google Scholar 

  • Riordan, J.R., Passow, H. 1973. The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts.In: Comparative Physiology. L. Bolis, K. Schmidt-Nielsen, and S.H.P. Maddrell, editors. p. 543. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Romero, P.J., Whittam, R. 1971. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. 214:401

    Google Scholar 

  • Schwoch, G., Passow, H. 1973. Preparation and properties of human erythrocytes ghosts.Molec. Cell. Biochem. 2:197

    PubMed  Google Scholar 

  • Shaw, T.I. 1955. Potassium movements in washed erythrocytes.J. Physiol. 129:464

    PubMed  Google Scholar 

  • Whittam, R. 1968. Control of membrane permeability to potassium in red blood cells.Nature 219:610

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knauf, P.A., Riordan, J.R., Schuhmann, B. et al. Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J. Membrain Biol. 25, 1–22 (1975). https://doi.org/10.1007/BF01868565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868565

Keywords

Navigation