The Journal of Membrane Biology

, Volume 119, Issue 1, pp 65–73 | Cite as

Membrane bilayer assembly in neural tissue of rat and squid as a critical phenomenon: Influence of temperature and membrane proteins

  • Lionel Ginsberg
  • Daniel L. Gilbert
  • Norman L. Gershfeld
Articles

Summary

Cell membrane bilayers have been reconstructed in vitro utilizing total lipid extracts from rat neural tissue (forebrain, cerebellum, brainstem and spinal cord) and from the optic lobe and fin nerve of the squidLoligo pealei. In agreement with the critical state theory of bilayer assembly (Gershfeld, N.L. 1986.Biophys. J.50:457–461; Gershfeld, N.L. 1989.J. Phys. Chem.93:5256–5261), these lipid extracts spontaneously formed purely unilamellar structures in aqueous dispersion, but only at a critical temperature,T*, which was species dependent. For all the rat tissuesT*=37±1°C; for squid neural extractsT*=15.5±1.4°C. These values correspond to ‘physiological’ temperatures for both organisms, implying that their lipid metabolism is geared to permit spontaneous assembly of unilamellar membranes at the ambient temperature in the tissues. Membrane protein composition had little or no effect on critical bilayer formation.

Key Words

bilayer assembly neural membranes critical temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J.M. 1989. Embryonic development of the squid.In: Squid as Experimental Animals. D.L. Gilbert, W.J. Adelman, Jr., and J.M. Arnold, editors. Plenum, New York (in press)Google Scholar
  2. Autilio, L.A., Norton, W.T., Terry, R.D. 1964. The preparation and some properties of purified myelin from the central nervous system.J. Neurochem. 11:17–27PubMedGoogle Scholar
  3. Barnes, G.T., Hunter, D.S. 1982. Heat conduction during the measurement of the evaporation resistances of monolayers.J. Colloid Interface Sci. 88:437–443Google Scholar
  4. Benjamins, J.A., Herschkowitz, N., Robinson, J., McKhann, G.M. 1971. The effects of inhibitors of protein synthesis on incorporation of lipids into myelin.J. Neurochem. 18:729–738PubMedGoogle Scholar
  5. Brackman, J.C., van Os, N.M., Engberts, J.B.F.N. 1988. Polymer-nonionic micelle complexation. Formation of poly(propylene oxide)-complexedn-octyl thioglucoside micelles.Langmuir 4:1266–1269Google Scholar
  6. Cheesman, D.F., Davies, J.T. 1954. Physicochemical and biological aspects of proteins at interfaces.Adv. Protein Chem. 9:439–501PubMedGoogle Scholar
  7. Defay, R., Prigogine, I., Bellemans, A., Everett, D.H. 1966. Surface Tension and Adsorption. Wiley, New YorkGoogle Scholar
  8. Folchi-Pi, J., Stoffyn, P.J. 1972. Proteolipids from membrane systems.Ann. NY Acad. Sci. 195:86–107PubMedGoogle Scholar
  9. Gaines, G.L., Jr. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. Wiley-Interscience, New YorkGoogle Scholar
  10. Gershfeld, N.L. 1974. Thermodynamics and experimental methods for equilibrium studies with lipid monolayers.In: Methods in Membrane Biology. E.D. Korn, editor. Vol. 1, pp. 69–104. Plenum, New York-LondonGoogle Scholar
  11. Gershfeld, N.L. 1976. Physical chemistry of lipid films at fluid interfaces.Annu. Rev. Phys. Chem. 27:349–368Google Scholar
  12. Gershfeld, N.L. 1986. Phospholipid surface bilayers at the air-water interface. III. Relation between surface bilayer formation and lipid bilayer assembly in cell membranes.Biophys. J. 50:457–461PubMedGoogle Scholar
  13. Gershfeld, N.L. 1989a. Spontaneous assembly of a phospholipid bilayer as a critical phenomenon: Influence of temperature, composition, and physical state.J. Phys. Chem. 93:5256–5261Google Scholar
  14. Gershfeld, N.L. 1989b. The critical unilamellar lipid state; a perspective for membrane bilayer assembly.Biochim. Biophys. Acta Rev. Biomembr. 988:335–350Google Scholar
  15. Gershfeld, N.L. 1989c. Thermodynamics of phospholipid bilayer assembly.Biochemistry 28:4229–4232PubMedGoogle Scholar
  16. Gershfeld, N.L., Murayama, M. 1988. Thermal instability of red blood cell membrane bilayers: Temperature dependence of hemolysis.J. Membrane Biol. 101:67–72Google Scholar
  17. Gershfeld, N.L., Stevens, W.F., Jr., Nossal, R.J. 1986. Equilibrium studies of phospholipid bilayer assembly. Coexistence of surface bilayers and unilamellar vesicles.Faraday Discuss. Chem. Soc. 81:19–28PubMedGoogle Scholar
  18. Gershfeld, N.L., Tajima, K. 1979. Spontaneous formation of lecithin bilayers at the air-water surface.Nature (London) 279:708–709Google Scholar
  19. Gilbert, D.L., Adelman, W.J., Jr., Arnold, J.M. (editors). 1989. Squid as Experimental Animals. Plenum, New York (in press)Google Scholar
  20. Ginsberg, L., Gershfeld, N.L. 1985. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.Biophys. J. 47:211–215PubMedGoogle Scholar
  21. Gonzalez-Sastre, F. 1970. The protein composition of isolated myelin.J. Neurochem. 17:1049–1056PubMedGoogle Scholar
  22. Gould, R.M., Pant, H., Gainer, H., Tytell, M. 1983. Phospholipid synthesis in the squid giant axon: Incorporation of lipid precursors.J. Neurochem. 40:1293–1299PubMedGoogle Scholar
  23. Hayes, L.W., Jungalwala, F.B. 1976. Synthesis and turnover of cerebrosides and phosphatidylserine of myelin and microsomal fractions of adult and developing rat brain.Biochem. J. 160:195–204PubMedGoogle Scholar
  24. Kahane, I., Razin, S. 1969. Synthesis and turnover of membrane protein and lipid inMycoplasma laidlawii.Biochim. Biophys. Acta. 183:79–89PubMedGoogle Scholar
  25. Kessler, R.J., Fanestil, D.D. 1986. Interference by lipids in the determination of protein using bicinchoninic acid.Anal. Biochem. 159:138–142PubMedGoogle Scholar
  26. Landowne, D., Scruggs, V. 1976. The temperature dependence of the movement of potassium and chloride ions associated with nerve impulses.J. Physiol. (London) 259:145–158Google Scholar
  27. Larrabee, M.G., Brinley, F.J., Jr. 1968. Incorporation of labelled phosphate into phospholipids in squid giant axons.J. Neurochem. 15:533–545PubMedGoogle Scholar
  28. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  29. Mindich, L. 1970. Membrane synthesis inBacillus subtilis: II. Integration of membrane proteins in the absence of lipid synthesis.J. Mol. Biol. 49:433–439PubMedGoogle Scholar
  30. Nelson, T.C. 1928. On the distribution of critical temperatures for spawning and for ciliary activity in bivalve molluscs.Science 67:220–221Google Scholar
  31. Nicol, J.A.C. 1960. The Biology of Marine Animals. Interscience, New YorkGoogle Scholar
  32. Papahadjopoulos, D., Vail, W.J., Moscarello, M. 1975. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: Studies on ultrastructure, phase transitions and permeability.J. Membrane Biol. 22:143–164Google Scholar
  33. Poduslo, J.F., Everly, J.L., Quarles, R.H. 1977. A low molecular weight glycoprotein associated with isolated myelin: Distinction from myelin proteolipid protein.J. Neurochem. 28:977–986PubMedGoogle Scholar
  34. Rose, H.G., Oklander, M. 1965. Improved procedure for the extraction of lipids from human erythrocytes.J. Lipid Res. 6:428–431Google Scholar
  35. Rowlinson, J.S. 1969. Liquid and Liquid Mixtures. (2nd Ed.) Plenum. New YorkGoogle Scholar
  36. Smith, M.E. 1967. The metabolism of myelin lipids.Adv. Lipid Res. 5:241–278PubMedGoogle Scholar
  37. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid.Anal. Biochem. 150:76–86PubMedGoogle Scholar
  38. Stoffel, W., Hillen, H., Schröder, W., Deutzmann, R. 1983. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein).Hoppe Seylers Z. Physiol. Chem. 364:1455–1466PubMedGoogle Scholar
  39. Stoscheck, C.M. 1987. Protein assay sensitive at nanogram levels.Anal. Biochem. 160:301–305PubMedGoogle Scholar
  40. Tajima, K., Gershfeld, N.L. 1985. Phospholipid surface bilayers at the air-water interface. I. Thermodynamic properties.Biophys. J. 47:203–209PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Lionel Ginsberg
    • 1
  • Daniel L. Gilbert
    • 2
  • Norman L. Gershfeld
    • 1
  1. 1.Laboratory of Physical Biology, National Institute of Arthritis and Musculoskeletal and Skin DiseaseNational Institutes of HealthBethesda
  2. 2.Laboratory of Biophysics, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesda

Personalised recommendations