The Journal of Membrane Biology

, Volume 119, Issue 1, pp 15–24 | Cite as

Studies of the cyclic adenosine monophosphate chemoreceptor ofParamecium

  • Judith L. Van Houten
  • Brian L. Cote
  • Jin Zhang
  • Jennifer Baez
  • Michael L. Gagnon


A doublet of proteins (∼48,000Mr) from theParamecium cell body membrane fits several criteria for the external cAMP chemoreceptor. These criteria include: (i) selective elution from a cAMP affinity column, matching a specificity that could be predicted from the behavioral response and whole-cell binding; (ii) binding to wheat germ agglutinin indicating the presence of carbohydrate moieties indicating surface exposure; and (iii) selective inhibition of the intact cells' chemoresponse to cAMP by antibodies against the doublet. Additional evidence for the existence of a receptor, in general, comes from selective elimination of the cAMP chemoresponse by photoaffinity labeling of whole cells with 8-N3-cAMP. The doublet proteins are not identical to the regulatory subunit of a cAMP-dependent protein kinase fromParamecium, theDictyostelium cAMP chemoreceptor, or the 42–45 kDa range proteins related to the large surface glycoprotein inParamecium. The doublet proteins are not readily separable and, as inDictyostelium, may represent two different covalent modification states of the same protein. Amino acid analysis indicates that the proteins are similar, but does not distinguish between the possibilities of proteolysis and covalent modification. Once cloned, this doublet may prove to be only the fifth external, eukaryotic chemoreceptor to be identified.

Key Words

chemoreceptor cyclic AMP Paramecium sensory transduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adoutte, A., Ramanathan, R., Lewis, R.M., Dute, R.R., Ling, K.-Y., Kung, C., Nelson, D.L. 1980. Biochemical studies of the excitable membrane ofParamecium tetraurelia: III. Proteins of cilia and ciliary membranes.J. Cell Biol. 84:717–738PubMedGoogle Scholar
  2. Anholt, R. 1987. Primary events in olfactory reception.Trends Biol. Sci. 12:58–62Google Scholar
  3. Aronson, N.N., Touster, D. 1965. Isolation of rat liver plasma membrane fragments in isotonic sucrose.In: Methods in Enzymology. S. Fleischer and L. Packer, editors. Vol. 31, pp. 99–102. Academic, New YorkGoogle Scholar
  4. Bayer, E.A., Ben-Hur, H., Wilchek, M. 1987. Enzyme-based detection of glycoproteins on blot transfers using avidin-biotin technology.Anal. Biochem. 161:123–131PubMedGoogle Scholar
  5. Bilinski, M., Plattner, H., Tiggeman, R. 1981. Isolation of surface membranes from normal and exocytotic mutant strains ofParamecium tetraurelia.Eur. J. Cell Biol. 24:108–115PubMedGoogle Scholar
  6. Burkholder, A.C., Hartwell, L.H. 1985. The yeast α-factor receptor: Structural properties deduced from the sequence of the STE2 gene.Nucleic Acids Res. 13:8463–8473PubMedGoogle Scholar
  7. Carr, W.E.S., Thompson, H.W. 1983. Adenosine 5′-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp.J. Comp. Physiol. 153:47–53Google Scholar
  8. Devreotes, P.N., Zigmond, S.H. 1988. Chemotaxis in eukaryotic cells.Annu. Rev. Cell. Biol. 4:649–686PubMedGoogle Scholar
  9. Eisenbach, L., Ramanathan, R., Nelson, D. 1983. Biochemical studies of the excitable membrane ofParamecium tetraurelia: IX. Antibodies against ciliary membrane proteins.J. Cell Biol. 97:1412–1420PubMedGoogle Scholar
  10. Engvall, E., Perlmann, P. 1972. Enzyme-linked immunosorbent assay, ELISA.J. Immunol. 109:129–135PubMedGoogle Scholar
  11. Hagen, D.C., McCafrey, G., Sprague, G.F. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor.Proc. Natl. Acad. Sci. USA 83:1418–1422PubMedGoogle Scholar
  12. Jagus, R., Pollard, J.W. 1988. Use of dried milk for immunoblotting.In: New Protein Techniques. J.M. Walter, editor. Vol. 3, pp. 403–406. Humana Press, Clifton (NJ)Google Scholar
  13. Kinnamon, S.C. 1988. Taste transduction: A diversity of mechanisms.Trends Neurosci. 11:491–496PubMedGoogle Scholar
  14. Klein, P., Sun, T.J., Saxe, C.L., Kimmel, A.R., Johnson, R.L., Devreotes, P.N. 1988. A chemoattractant receptor controls development inDictyostelium discoideum.Science 241:1467–1472PubMedGoogle Scholar
  15. Klein, P., Vaughan, R., Borleis, J., Devreotes, P. 1987. The surface cyclic AMP receptor inDictyostelium.J. Biol. Chem. 261:358–364Google Scholar
  16. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685Google Scholar
  17. Lancet, D., Pace, U. 1987. The molecular bases of odor recognition.Trends Biol. Sci. 12:63–66Google Scholar
  18. Lee, Y., Lardy, H.A. 1965. Influence of thyroid hormones onl-alpha-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat.J. Biol. Chem. 240:1427–1436PubMedGoogle Scholar
  19. Linhardt, K., Walter, K. 1965. Phosphatases.In: Methods in Enzymatic Analysis. H. Bergmeye, editor. pp. 779–785. Academic, New YorkGoogle Scholar
  20. Makman, R., Sutherland, E.W. 1964. Adenosine 3′5′-phosphate inEscherichia coli.J. Biol. Chem. 240;1309–1313Google Scholar
  21. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.J. Biol. Chem. 262:10035–10038PubMedGoogle Scholar
  22. Nakayama, Y., Miyajima, A., Arai, K. 1985. Nucleotide sequences of STE2 and STE3, cell-type specific sterile genes fromSaccharomyces cerebisiae.EMBO J. 4:2643–2648Google Scholar
  23. Novoselov, V.I., Krapivinskaya, L.D., Fesenko, E.E. 1988. Amino acid binding glycoproteins from the olfactory epithelium of skate (Dasyatis pastinaca).Chem. Senses 13:267–279Google Scholar
  24. Preer, J.R. 1959. Studies of the immobilization antigens ofParamecium: III. Properties.J. Immunol. 83:276–283PubMedGoogle Scholar
  25. Preston, R.R., Van Houten, J. 1987. Chemoreception inParamecium tetraurelia: Acetate and folate-induced membrane hyperpolarization.J. Comp. Physiol. 160:525–536Google Scholar
  26. Price, S., Willey, A. 1988. Effects of antibodies against odorant binding proteins on electrophysiological responses to odorants.Biochim. Biophys. Acta 965:127–129PubMedGoogle Scholar
  27. Sasner, J.M., Van Houten, J.L. 1989. Evidence for aParamecium folate chemoreceptor.Chem. Senses 14:587–595Google Scholar
  28. Schulz, S., Denaro, M., Xypolyta-Bulloch, A., Van Houten, J. 1984. Relationship of folate binding to chemoreception inParamecium.J. Comp. Physiol. 155:113–119Google Scholar
  29. Singh, S., Lowe, D.G., Thorpe, D.S., Rodriguez, H., Kuang, W.-J., Dagott, L., Chinkers, M., Goeddel, D.V., Garbers, D.L. 1988. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases.Nature (London) 334:708–712Google Scholar
  30. Smith, R., Preston, R.R., Schulz, S., Gagnon, M.L., Van Houten, J.L. 1987. Correlation of cyclic adenosine monophosphate binding and chemoresponse inParamecium.Biochim. Biophys. Acta 928:171–178PubMedGoogle Scholar
  31. Snyder, S.H., Sklar, P.B., Pevsner, J. 1988. Molecular mechanisms of olfaction.J. Biol. Chem. 263:13971–13974PubMedGoogle Scholar
  32. Sturgess, J., Moscarello, M., Schachter, H. 1978. The structure and biosynthesis of membrane glycoproteins.In: Current topics in Membranes and Transport. F. Bonner, and A. Kleinzeller, editors. Vol. 11, pp. 15–105. Academic, New YorkGoogle Scholar
  33. Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354PubMedGoogle Scholar
  34. Van Houten, J. 1978. Two mechanisms of chemotaxis inParamecium.J. Comp. Physiol. 127:167–174Google Scholar
  35. Van Houten, J. 1979. Membrane potential changes during chemokinesis inParamecium.Science 204:1100–1103PubMedGoogle Scholar
  36. Van Houten, J., Martel, E., Kasch, T. 1982. Kinetic analysis of chemokinesis ofParamecium.J. Protzool. 29:226–230Google Scholar
  37. Vaughan, R., Devreotes, P. 1988. Ligand-induced phosphorylation of the cAMP receptor fromDictyostelium discoideum.J. Biol. Chem. 263:14538–14543PubMedGoogle Scholar
  38. Vogt, R.G., Prestwich, G.D., Riddiford, L.M. 1988. Sex pheromone receptor proteins.J. Biol. Chem. 263:3952–3959PubMedGoogle Scholar
  39. Zimmer-Faust, R., Martinez, L.A. 1988. A proposed role of adenine nucleotides as inducers of feeding in aquatic animals.Chem.Senses 13:751–752Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Judith L. Van Houten
    • 1
  • Brian L. Cote
    • 1
  • Jin Zhang
    • 1
  • Jennifer Baez
    • 1
  • Michael L. Gagnon
    • 1
  1. 1.Department of ZoologyUniversity of VermontBurlington

Personalised recommendations