Skip to main content
Log in

Studies of the cyclic adenosine monophosphate chemoreceptor ofParamecium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A doublet of proteins (∼48,000M r) from theParamecium cell body membrane fits several criteria for the external cAMP chemoreceptor. These criteria include: (i) selective elution from a cAMP affinity column, matching a specificity that could be predicted from the behavioral response and whole-cell binding; (ii) binding to wheat germ agglutinin indicating the presence of carbohydrate moieties indicating surface exposure; and (iii) selective inhibition of the intact cells' chemoresponse to cAMP by antibodies against the doublet. Additional evidence for the existence of a receptor, in general, comes from selective elimination of the cAMP chemoresponse by photoaffinity labeling of whole cells with 8-N3-cAMP. The doublet proteins are not identical to the regulatory subunit of a cAMP-dependent protein kinase fromParamecium, theDictyostelium cAMP chemoreceptor, or the 42–45 kDa range proteins related to the large surface glycoprotein inParamecium. The doublet proteins are not readily separable and, as inDictyostelium, may represent two different covalent modification states of the same protein. Amino acid analysis indicates that the proteins are similar, but does not distinguish between the possibilities of proteolysis and covalent modification. Once cloned, this doublet may prove to be only the fifth external, eukaryotic chemoreceptor to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adoutte, A., Ramanathan, R., Lewis, R.M., Dute, R.R., Ling, K.-Y., Kung, C., Nelson, D.L. 1980. Biochemical studies of the excitable membrane ofParamecium tetraurelia: III. Proteins of cilia and ciliary membranes.J. Cell Biol. 84:717–738

    PubMed  Google Scholar 

  • Anholt, R. 1987. Primary events in olfactory reception.Trends Biol. Sci. 12:58–62

    Google Scholar 

  • Aronson, N.N., Touster, D. 1965. Isolation of rat liver plasma membrane fragments in isotonic sucrose.In: Methods in Enzymology. S. Fleischer and L. Packer, editors. Vol. 31, pp. 99–102. Academic, New York

    Google Scholar 

  • Bayer, E.A., Ben-Hur, H., Wilchek, M. 1987. Enzyme-based detection of glycoproteins on blot transfers using avidin-biotin technology.Anal. Biochem. 161:123–131

    PubMed  Google Scholar 

  • Bilinski, M., Plattner, H., Tiggeman, R. 1981. Isolation of surface membranes from normal and exocytotic mutant strains ofParamecium tetraurelia.Eur. J. Cell Biol. 24:108–115

    PubMed  Google Scholar 

  • Burkholder, A.C., Hartwell, L.H. 1985. The yeast α-factor receptor: Structural properties deduced from the sequence of the STE2 gene.Nucleic Acids Res. 13:8463–8473

    PubMed  Google Scholar 

  • Carr, W.E.S., Thompson, H.W. 1983. Adenosine 5′-monophosphate, an internal regulatory agent, is a potent chemoattractant for a marine shrimp.J. Comp. Physiol. 153:47–53

    Google Scholar 

  • Devreotes, P.N., Zigmond, S.H. 1988. Chemotaxis in eukaryotic cells.Annu. Rev. Cell. Biol. 4:649–686

    PubMed  Google Scholar 

  • Eisenbach, L., Ramanathan, R., Nelson, D. 1983. Biochemical studies of the excitable membrane ofParamecium tetraurelia: IX. Antibodies against ciliary membrane proteins.J. Cell Biol. 97:1412–1420

    PubMed  Google Scholar 

  • Engvall, E., Perlmann, P. 1972. Enzyme-linked immunosorbent assay, ELISA.J. Immunol. 109:129–135

    PubMed  Google Scholar 

  • Hagen, D.C., McCafrey, G., Sprague, G.F. 1986. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor.Proc. Natl. Acad. Sci. USA 83:1418–1422

    PubMed  Google Scholar 

  • Jagus, R., Pollard, J.W. 1988. Use of dried milk for immunoblotting.In: New Protein Techniques. J.M. Walter, editor. Vol. 3, pp. 403–406. Humana Press, Clifton (NJ)

    Google Scholar 

  • Kinnamon, S.C. 1988. Taste transduction: A diversity of mechanisms.Trends Neurosci. 11:491–496

    PubMed  Google Scholar 

  • Klein, P., Sun, T.J., Saxe, C.L., Kimmel, A.R., Johnson, R.L., Devreotes, P.N. 1988. A chemoattractant receptor controls development inDictyostelium discoideum.Science 241:1467–1472

    PubMed  Google Scholar 

  • Klein, P., Vaughan, R., Borleis, J., Devreotes, P. 1987. The surface cyclic AMP receptor inDictyostelium.J. Biol. Chem. 261:358–364

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Lancet, D., Pace, U. 1987. The molecular bases of odor recognition.Trends Biol. Sci. 12:63–66

    Google Scholar 

  • Lee, Y., Lardy, H.A. 1965. Influence of thyroid hormones onl-alpha-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat.J. Biol. Chem. 240:1427–1436

    PubMed  Google Scholar 

  • Linhardt, K., Walter, K. 1965. Phosphatases.In: Methods in Enzymatic Analysis. H. Bergmeye, editor. pp. 779–785. Academic, New York

    Google Scholar 

  • Makman, R., Sutherland, E.W. 1964. Adenosine 3′5′-phosphate inEscherichia coli.J. Biol. Chem. 240;1309–1313

    Google Scholar 

  • Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes.J. Biol. Chem. 262:10035–10038

    PubMed  Google Scholar 

  • Nakayama, Y., Miyajima, A., Arai, K. 1985. Nucleotide sequences of STE2 and STE3, cell-type specific sterile genes fromSaccharomyces cerebisiae.EMBO J. 4:2643–2648

    Google Scholar 

  • Novoselov, V.I., Krapivinskaya, L.D., Fesenko, E.E. 1988. Amino acid binding glycoproteins from the olfactory epithelium of skate (Dasyatis pastinaca).Chem. Senses 13:267–279

    Google Scholar 

  • Preer, J.R. 1959. Studies of the immobilization antigens ofParamecium: III. Properties.J. Immunol. 83:276–283

    PubMed  Google Scholar 

  • Preston, R.R., Van Houten, J. 1987. Chemoreception inParamecium tetraurelia: Acetate and folate-induced membrane hyperpolarization.J. Comp. Physiol. 160:525–536

    Google Scholar 

  • Price, S., Willey, A. 1988. Effects of antibodies against odorant binding proteins on electrophysiological responses to odorants.Biochim. Biophys. Acta 965:127–129

    PubMed  Google Scholar 

  • Sasner, J.M., Van Houten, J.L. 1989. Evidence for aParamecium folate chemoreceptor.Chem. Senses 14:587–595

    Google Scholar 

  • Schulz, S., Denaro, M., Xypolyta-Bulloch, A., Van Houten, J. 1984. Relationship of folate binding to chemoreception inParamecium.J. Comp. Physiol. 155:113–119

    Google Scholar 

  • Singh, S., Lowe, D.G., Thorpe, D.S., Rodriguez, H., Kuang, W.-J., Dagott, L., Chinkers, M., Goeddel, D.V., Garbers, D.L. 1988. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases.Nature (London) 334:708–712

    Google Scholar 

  • Smith, R., Preston, R.R., Schulz, S., Gagnon, M.L., Van Houten, J.L. 1987. Correlation of cyclic adenosine monophosphate binding and chemoresponse inParamecium.Biochim. Biophys. Acta 928:171–178

    PubMed  Google Scholar 

  • Snyder, S.H., Sklar, P.B., Pevsner, J. 1988. Molecular mechanisms of olfaction.J. Biol. Chem. 263:13971–13974

    PubMed  Google Scholar 

  • Sturgess, J., Moscarello, M., Schachter, H. 1978. The structure and biosynthesis of membrane glycoproteins.In: Current topics in Membranes and Transport. F. Bonner, and A. Kleinzeller, editors. Vol. 11, pp. 15–105. Academic, New York

    Google Scholar 

  • Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354

    PubMed  Google Scholar 

  • Van Houten, J. 1978. Two mechanisms of chemotaxis inParamecium.J. Comp. Physiol. 127:167–174

    Google Scholar 

  • Van Houten, J. 1979. Membrane potential changes during chemokinesis inParamecium.Science 204:1100–1103

    PubMed  Google Scholar 

  • Van Houten, J., Martel, E., Kasch, T. 1982. Kinetic analysis of chemokinesis ofParamecium.J. Protzool. 29:226–230

    Google Scholar 

  • Vaughan, R., Devreotes, P. 1988. Ligand-induced phosphorylation of the cAMP receptor fromDictyostelium discoideum.J. Biol. Chem. 263:14538–14543

    PubMed  Google Scholar 

  • Vogt, R.G., Prestwich, G.D., Riddiford, L.M. 1988. Sex pheromone receptor proteins.J. Biol. Chem. 263:3952–3959

    PubMed  Google Scholar 

  • Zimmer-Faust, R., Martinez, L.A. 1988. A proposed role of adenine nucleotides as inducers of feeding in aquatic animals.Chem.Senses 13:751–752

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Houten, J.L., Cote, B.L., Zhang, J. et al. Studies of the cyclic adenosine monophosphate chemoreceptor ofParamecium . J. Membrain Biol. 119, 15–24 (1991). https://doi.org/10.1007/BF01868536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868536

Key Words

Navigation